File size: 16,240 Bytes
f17f7b0
29afb8d
 
36a9ee5
2568013
 
 
621c6e5
 
2568013
 
 
 
 
 
2375b22
2568013
 
 
29afb8d
2568013
 
 
 
 
 
 
 
 
 
d0b0cf2
 
898dd6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2375b22
fabe9dd
2375b22
2568013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13a9517
61b26d2
2568013
 
 
 
 
 
 
 
 
13a9517
 
fe3aa70
2568013
 
13a9517
2568013
b76ec4e
66a9013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2568013
2375b22
66a9013
2568013
 
 
 
d0b0cf2
 
2568013
 
 
 
66a9013
2568013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66a9013
 
2568013
65632a5
2375b22
cfc9d46
2568013
66a9013
 
 
 
 
 
cfc9d46
66a9013
2375b22
852e884
79cc590
 
 
 
 
 
 
 
 
 
 
2375b22
 
 
2568013
a19ea4b
a2a5135
852e884
 
2375b22
188aad8
a2a5135
79cc590
 
 
 
 
 
 
 
 
 
cfc9d46
 
 
 
 
 
ee04612
 
cfc9d46
 
a2a5135
2568013
63e303f
 
 
2375b22
 
 
2568013
 
 
d0b0cf2
 
 
2568013
 
79cc590
2568013
 
 
 
79cc590
2568013
2375b22
66a9013
2375b22
 
 
 
 
d0b0cf2
66a9013
d0b0cf2
2568013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0a30b3
 
 
 
2568013
8d48dde
d0b0cf2
 
 
2568013
 
 
 
 
 
 
d0a30b3
13b49d9
c6449a4
 
 
 
 
 
 
 
 
 
 
13b49d9
 
d0a30b3
a97dfad
2375b22
4396839
 
 
2f4530b
4396839
13b49d9
4396839
13b49d9
d0a30b3
 
 
 
 
 
 
 
a97dfad
 
d0a30b3
 
7bccef5
 
 
 
 
 
cf112d4
d0a30b3
cf112d4
d9c86b4
d0a30b3
 
89d5a0f
d0a30b3
c6449a4
d0a30b3
f63c9d3
 
 
 
 
 
 
 
 
 
 
c5243c6
f63c9d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
852e884
f63c9d3
 
 
c6449a4
2568013
852e884
cfc9d46
d0b0cf2
2568013
af08e7f
66a9013
2375b22
cfc9d46
79cc590
2568013
2375b22
66a9013
 
 
cfc9d46
79cc590
66a9013
 
2375b22
 
79cc590
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
import spaces
import torch

print(f'torch version:{torch.__version__}')
import functools
import gc
import os
import subprocess

import shutil
import sys
import tempfile
import time
from datetime import datetime
from pathlib import Path
import uuid

import cv2
import gradio as gr

from huggingface_hub import hf_hub_download
from PIL import Image

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

from src.misc.image_io import save_interpolated_video
from src.model.model.anysplat import AnySplat
from src.model.ply_export import export_ply
from src.utils.image import process_image

os.environ["ANYSPLAT_PROCESSED"] = f"{os.getcwd()}/proprocess_results"

from plyfile import PlyData
import numpy as np
import argparse
from io import BytesIO


def process_ply_to_splat(ply_file_path):
    plydata = PlyData.read(ply_file_path)
    vert = plydata["vertex"]
    sorted_indices = np.argsort(
        -np.exp(vert["scale_0"] + vert["scale_1"] + vert["scale_2"])
        / (1 + np.exp(-vert["opacity"]))
    )
    buffer = BytesIO()
    for idx in sorted_indices:
        v = plydata["vertex"][idx]
        position = np.array([v["x"], v["y"], v["z"]], dtype=np.float32)
        scales = np.exp(
            np.array(
                [v["scale_0"], v["scale_1"], v["scale_2"]],
                dtype=np.float32,
            )
        )
        rot = np.array(
            [v["rot_0"], v["rot_1"], v["rot_2"], v["rot_3"]],
            dtype=np.float32,
        )
        SH_C0 = 0.28209479177387814
        color = np.array(
            [
                0.5 + SH_C0 * v["f_dc_0"],
                0.5 + SH_C0 * v["f_dc_1"],
                0.5 + SH_C0 * v["f_dc_2"],
                1 / (1 + np.exp(-v["opacity"])),
            ]
        )
        buffer.write(position.tobytes())
        buffer.write(scales.tobytes())
        buffer.write((color * 255).clip(0, 255).astype(np.uint8).tobytes())
        buffer.write(
            ((rot / np.linalg.norm(rot)) * 128 + 128)
            .clip(0, 255)
            .astype(np.uint8)
            .tobytes()
        )

    return buffer.getvalue()

def save_splat_file(splat_data, output_path):
    with open(output_path, "wb") as f:
        f.write(splat_data)

def get_reconstructed_scene(outdir, image_files, model, device):

    images = [process_image(img_path) for img_path in image_files]
    images = torch.stack(images, dim=0).unsqueeze(0).to(device)  # [1, K, 3, 448, 448]
    b, v, c, h, w = images.shape

    assert c == 3, "Images must have 3 channels"

    gaussians, pred_context_pose = model.inference((images + 1) * 0.5)

    pred_all_extrinsic = pred_context_pose["extrinsic"]
    pred_all_intrinsic = pred_context_pose["intrinsic"]
    video, depth_colored = save_interpolated_video(
        pred_all_extrinsic,
        pred_all_intrinsic,
        b,
        h,
        w,
        gaussians,
        outdir,
        model.decoder,
    )
    plyfile = os.path.join(outdir, "gaussians.ply")
    # splatfile = os.path.join(outdir, "gaussians.splat")

    export_ply(
        gaussians.means[0],
        gaussians.scales[0],
        gaussians.rotations[0],
        gaussians.harmonics[0],
        gaussians.opacities[0],
        Path(plyfile),
        save_sh_dc_only=True,
    )
    # splat_data = process_ply_to_splat(plyfile)
    # save_splat_file(splat_data, splatfile)

    # Clean up
    torch.cuda.empty_cache()
    return plyfile, video, depth_colored

def extract_images(input_images, session_id):

    start_time = time.time()
    gc.collect()
    torch.cuda.empty_cache()

    base_dir = os.path.join(os.environ["ANYSPLAT_PROCESSED"], session_id)
    target_dir = base_dir
    target_dir_images = os.path.join(target_dir, "images")

    if os.path.exists(target_dir):
        shutil.rmtree(target_dir)
        
    os.makedirs(target_dir)
    os.makedirs(target_dir_images)

    image_paths = []

    if input_images is not None:
        for file_data in input_images:
            if isinstance(file_data, dict) and "name" in file_data:
                file_path = file_data["name"]
            else:
                file_path = file_data
            dst_path = os.path.join(target_dir_images, os.path.basename(file_path))
            shutil.copy(file_path, dst_path)
            image_paths.append(dst_path)

    end_time = time.time()
    print(
        f"Files copied to {target_dir_images}; took {end_time - start_time:.3f} seconds"
    )
    return target_dir, image_paths
    

def extract_frames(input_video, session_id):

    start_time = time.time()
    gc.collect()
    torch.cuda.empty_cache()

    base_dir = os.path.join(os.environ["ANYSPLAT_PROCESSED"], session_id)
    target_dir = base_dir
    target_dir_images = os.path.join(target_dir, "images")

    if os.path.exists(target_dir):
        shutil.rmtree(target_dir)
        
    os.makedirs(target_dir)
    os.makedirs(target_dir_images)

    image_paths = []

    if input_video is not None:
        if isinstance(input_video, dict) and "name" in input_video:
            video_path = input_video["name"]
        else:
            video_path = input_video

        vs = cv2.VideoCapture(video_path)
        fps = vs.get(cv2.CAP_PROP_FPS)
        frame_interval = int(fps * 1)  # 1 frame/sec

        count = 0
        video_frame_num = 0
        while True:
            gotit, frame = vs.read()
            if not gotit:
                break
            count += 1
            if count % frame_interval == 0:
                image_path = os.path.join(
                    target_dir_images, f"{video_frame_num:06}.png"
                )
                cv2.imwrite(image_path, frame)
                image_paths.append(image_path)
                video_frame_num += 1

    # Sort final images for gallery
    image_paths = sorted(image_paths)

    end_time = time.time()
    print(
        f"Files copied to {target_dir_images}; took {end_time - start_time:.3f} seconds"
    )
    return target_dir, image_paths


def update_gallery_on_video_upload(input_video, session_id):
    if not input_video:
        return None, None, None
        
    target_dir, image_paths = extract_frames(input_video, session_id)
    return None, target_dir, image_paths

def update_gallery_on_images_upload(input_images, session_id):

    if not input_images:
        return None, None, None
        
    target_dir, image_paths = extract_images(input_images, session_id)
    return None, target_dir, image_paths

@spaces.GPU()
def generate_splats_from_video(video_path, session_id=None):
    """
    Perform Gaussian Splatting from Unconstrained Views a Given Video, using a Feed-forward model.
    
    Args:
        video_path (str): Path to the input video file on disk.
    Returns:
        plyfile: Path to the reconstructed 3D object from the given video.
        rgb_vid: Path the the interpolated rgb video, increasing the frame rate using guassian splatting and interpolation of frames.
        depth_vid: Path the the interpolated depth video, increasing the frame rate using guassian splatting and interpolation of frames.
        image_paths: A list of paths from extracted frame from the video that is used for training Gaussian Splatting.
    """
    
    if session_id is None:
        session_id = uuid.uuid4().hex

    images_folder, image_paths = extract_frames(video_path, session_id)
    plyfile, rgb_vid, depth_vid = generate_splats_from_images(image_paths, session_id)

    return plyfile, rgb_vid, depth_vid, image_paths
    
@spaces.GPU()
def generate_splats_from_images(image_paths, session_id=None):
    """
    Perform Gaussian Splatting from Unconstrained Views a Given Images , using a Feed-forward model.
    
    Args:
        image_paths (str): Path to the input image files on disk.
    Returns:
        plyfile: Path to the reconstructed 3D object from the given image files.
        rgb_vid: Path the the interpolated rgb video, increasing the frame rate using guassian splatting and interpolation of frames.
        depth_vid: Path the the interpolated depth video, increasing the frame rate using guassian splatting and interpolation of frames.
    """
    processed_image_paths = []

    for file_data in image_paths:
        if isinstance(file_data, tuple):
            file_path, _ = file_data
            processed_image_paths.append(file_path)
        else:
            processed_image_paths.append(file_data)

    image_paths = processed_image_paths
    print(image_paths)

    if len(image_paths) == 1:
        image_paths.append(image_paths[0])

    if session_id is None:
        session_id = uuid.uuid4().hex
    
    start_time = time.time()
    gc.collect()
    torch.cuda.empty_cache()

    base_dir = os.path.join(os.environ["ANYSPLAT_PROCESSED"], session_id)

    print("Running run_model...")
    with torch.no_grad():
        plyfile, rgb_vid, depth_vid = get_reconstructed_scene(base_dir, image_paths, model, device)

    end_time = time.time()
    print(f"Total time: {end_time - start_time:.2f} seconds (including IO)")

    return plyfile, rgb_vid, depth_vid

def cleanup(request: gr.Request):

    sid = request.session_hash
    if sid:
        d1 = os.path.join(os.environ["ANYSPLAT_PROCESSED"], sid)
        shutil.rmtree(d1, ignore_errors=True)
        
def start_session(request: gr.Request):

    return request.session_hash


if __name__ == "__main__":
    share = True
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    # Load model
    model = AnySplat.from_pretrained(
        "lhjiang/anysplat"
    )
    model = model.to(device)
    model.eval()
    for param in model.parameters():
        param.requires_grad = False

    css = """
        #col-container {
            margin: 0 auto;
            max-width: 1024px;
        }
        """
    with gr.Blocks(css=css, title="AnySplat Demo") as demo:
        session_state = gr.State()
        demo.load(start_session, outputs=[session_state])
                
        target_dir_output = gr.Textbox(label="Target Dir", visible=False, value="None")
        is_example = gr.Textbox(label="is_example", visible=False, value="None")
        num_images = gr.Textbox(label="num_images", visible=False, value="None")
        dataset_name = gr.Textbox(label="dataset_name", visible=False, value="None")
        scene_name = gr.Textbox(label="scene_name", visible=False, value="None")
        image_type = gr.Textbox(label="image_type", visible=False, value="None")

        with gr.Column(elem_id="col-container"):

            gr.HTML(
                """
                <div style="text-align: center;">
                    <p style="font-size:16px; display: inline; margin: 0;">
                        <strong>AnySplat</strong> – Feed-forward 3D Gaussian Splatting from Unconstrained Views
                    </p>
                    <a href="https://github.com/OpenRobotLab/AnySplat" style="display: inline-block; vertical-align: middle; margin-left: 0.5em;">
                        <img src="https://img.shields.io/badge/GitHub-Repo-blue" alt="GitHub Repo">
                    </a>
                </div>
                """
            )
        
            with gr.Row():
                with gr.Column():

                    with gr.Tab("Video"):
                        input_video = gr.Video(label="Upload Video", sources=["upload"], interactive=True, height=512)
                    with gr.Tab("Images"):
                        input_images = gr.File(file_count="multiple", label="Upload Files", height=512)
                        
                    submit_btn = gr.Button(
                        "Generate Gaussian Splat", scale=1, variant="primary"
                    )
        
                    image_gallery = gr.Gallery(
                        label="Preview",
                        columns=4,
                        height="300px",
                        show_download_button=True,
                        object_fit="contain",
                        preview=True,
                    )
    
                with gr.Column():
                    with gr.Column():
                        gr.HTML(
                            """
                            <p style="opacity: 0.6; font-style: italic;">
                              This might take a few seconds to load the 3D model
                            </p>
                            """
                        )
                        reconstruction_output = gr.Model3D(
                            label="Ply Gaussian Model",
                            height=512,
                            zoom_speed=0.5,
                            pan_speed=0.5,
                            # camera_position=[20, 20, 20],
                        )
                
                    with gr.Row():
                        rgb_video = gr.Video(
                            label="RGB Video", interactive=False, autoplay=True
                        )
                        depth_video = gr.Video(
                            label="Depth Video",
                            interactive=False,
                            autoplay=True,
                        )
                    with gr.Row():
                        examples = [
                            ["examples/video/re10k_1eca36ec55b88fe4.mp4"],
                            ["examples/video/spann3r.mp4"],
                            ["examples/video/bungeenerf_colosseum.mp4"],
                            ["examples/video/fox.mp4"],
                            ["examples/video/vrnerf_apartment.mp4"],
                            # [None, "examples/video/vrnerf_kitchen.mp4", "vrnerf", "kitchen", "17", "Real", "True",],
                            # [None, "examples/video/vrnerf_riverview.mp4", "vrnerf", "riverview", "12", "Real", "True",],
                            # [None, "examples/video/vrnerf_workshop.mp4", "vrnerf", "workshop", "32", "Real", "True",],
                            # [None, "examples/video/fillerbuster_ramen.mp4", "fillerbuster", "ramen", "32", "Real", "True",],
                            # [None, "examples/video/meganerf_rubble.mp4", "meganerf", "rubble", "10", "Real", "True",],
                            # [None, "examples/video/llff_horns.mp4", "llff", "horns", "12", "Real", "True",],
                            # [None, "examples/video/llff_fortress.mp4", "llff", "fortress", "7", "Real", "True",],
                            # [None, "examples/video/dtu_scan_106.mp4", "dtu", "scan_106", "20", "Real", "True",],
                            # [None, "examples/video/horizongs_hillside_summer.mp4", "horizongs", "hillside_summer", "55", "Synthetic", "True",],
                            # [None, "examples/video/kitti360.mp4", "kitti360", "kitti360", "64", "Real", "True",],
                        ]
                
                        gr.Examples(
                            examples=examples,
                            inputs=[
                                input_video
                            ],
                            outputs=[
                                reconstruction_output,
                                rgb_video,
                                depth_video,
                                image_gallery
                            ],
                            fn=generate_splats_from_video,
                            cache_examples=True,
                        )
                            
               
        submit_btn.click(
            fn=generate_splats_from_images,
            inputs=[image_gallery, session_state],
            outputs=[reconstruction_output, rgb_video, depth_video])

        input_video.upload(
            fn=update_gallery_on_video_upload,
            inputs=[input_video, session_state],
            outputs=[reconstruction_output, target_dir_output, image_gallery],
            show_api=False
        )

        input_images.upload(
            fn=update_gallery_on_images_upload,
            inputs=[input_images, session_state],
            outputs=[reconstruction_output, target_dir_output, image_gallery],
            show_api=False
        )

        demo.unload(cleanup)
        demo.queue()
        demo.launch(show_error=True, share=True, mcp_server=True)