File size: 6,076 Bytes
9e1636e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5640a0a
 
 
9e1636e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
#!/usr/bin/env python
# -*- coding: utf-8 -*-

import gradio as gr
#from transformers import pipeline 
import torch
from utils import *
from presets import *

#antwort=""

# Create a chatbot connection
#chatbot = hugchat.ChatBot(cookie_path="cookies.json")

#Alternativ mit beliebigen Modellen:
#base_model = "project-baize/baize-v2-7b"
base_model = "microsoft/DialoGPT-medium"
tokenizer,model,device = load_tokenizer_and_model(base_model)



def predict(text, chatbotGr, history):
    #global antwort
    inputs = generate_prompt_with_history(text,history,tokenizer,max_length=max_context_length_tokens)

    if inputs is None:
        yield chatbotGr,history,"Input too long."
        return 
    else:
        prompt,inputs=inputs
        begin_length = len(prompt)
    input_ids = inputs["input_ids"][:,-max_context_length_tokens:].to(device)
    torch.cuda.empty_cache()
    global total_count
    total_count += 1
    print(total_count)
    if total_count % 50 == 0 :
        os.system("nvidia-smi")
    with torch.no_grad():
        for x in greedy_search(input_ids,model,tokenizer,stop_words=["[|Human|]", "[|AI|]"],max_length=max_length_tokens,temperature=temperature,top_p=top_p):
            if is_stop_word_or_prefix(x,["[|Human|]", "[|AI|]"]) is False:
                if "[|Human|]" in x:
                    x = x[:x.index("[|Human|]")].strip()
                if "[|AI|]" in x:
                    x = x[:x.index("[|AI|]")].strip() 
                x = x.strip()   
                a, b=   [[y[0],convert_to_markdown(y[1])] for y in history]+[[text, convert_to_markdown(x)]],history + [[text,x]]
                yield a, b, "Generating..."
            if shared_state.interrupted:
                shared_state.recover()
                try:
                    yield a, b, "Stop: Success"
                    return
                except:
                    pass
    del input_ids
    gc.collect()
    torch.cuda.empty_cache()
    #print(text)
    #print(x)
    #print("="*80)
    try:
        yield a,b,"Generate: Success"
    except:
        pass

"""   
    if inputs is None:
        #antwort=""
        yield chatbotGr,history,"Eingabe zu lang."
        return 
    else:
        prompt,inputs=inputs
        #begin_length = len(prompt)
        
    antwort = chatbot.chat(prompt)
"""

def reset_chat():
    id_new = chatbot.new_conversation()
    chatbot.change_conversation(id_new)
    reset_textbox()



with gr.Blocks(theme=small_and_beautiful_theme) as demo:
    history = gr.State([])
    user_question = gr.State("")
    with gr.Row():
        gr.HTML(title)
        status_display = gr.Markdown("Erfolg", elem_id="status_display")
    gr.Markdown(description_top)
    with gr.Row(scale=1).style(equal_height=True):
        with gr.Column(scale=5):
            with gr.Row(scale=1):
                chatbotGr = gr.Chatbot(elem_id="LI_chatbot").style(height="100%")
            with gr.Row(scale=1):
                with gr.Column(scale=12):
                    user_input = gr.Textbox(
                        show_label=False, placeholder="Gib deinen Text / Frage ein."
                    ).style(container=False)
                with gr.Column(min_width=90, scale=1):
                    submitBtn = gr.Button("Absenden")
                with gr.Column(min_width=90, scale=1):
                    cancelBtn = gr.Button("Stoppen")
            with gr.Row(scale=1):
                emptyBtn = gr.Button(
                    "🧹 Neuer Chat",
                )
        with gr.Column():
            with gr.Column(min_width=50, scale=1):
                with gr.Tab(label="Parameter zum Model"):
                    gr.Markdown("# Parameters")
                    top_p = gr.Slider(
                        minimum=-0,
                        maximum=1.0,
                        value=0.95,
                        step=0.05,
                        interactive=True,
                        label="Top-p",
                    )
                    temperature = gr.Slider(
                        minimum=0.1,
                        maximum=2.0,
                        value=1,
                        step=0.1,
                        interactive=True,
                        label="Temperature",
                    )
                    max_length_tokens = gr.Slider(
                        minimum=0,
                        maximum=512,
                        value=512,
                        step=8,
                        interactive=True,
                        label="Max Generation Tokens",
                    )
                    max_context_length_tokens = gr.Slider(
                        minimum=0,
                        maximum=4096,
                        value=2048,
                        step=128,
                        interactive=True,
                        label="Max History Tokens",
                    )
    gr.Markdown(description)

    predict_args = dict(
        fn=predict,
        inputs=[
            user_question,
            chatbotGr,
            history,
            top_p,
            temperature,
            max_length_tokens,
            max_context_length_tokens,
        ],
        outputs=[chatbotGr, history, status_display],
        show_progress=True,
    )

    #neuer Chat
    reset_args = dict(
        fn=reset_chat, inputs=[], outputs=[user_input, status_display]
    )
    
    # Chatbot
    transfer_input_args = dict(
        fn=transfer_input, inputs=[user_input], outputs=[user_question, user_input, submitBtn], show_progress=True
    )

    #Listener auf Start-Click auf Button oder Return
    predict_event1 = user_input.submit(**transfer_input_args).then(**predict_args)
    predict_event2 = submitBtn.click(**transfer_input_args).then(**predict_args)

    #Listener, Wenn reset...
    emptyBtn.click(
        reset_state,
        outputs=[chatbotGr, history, status_display],
        show_progress=True,
    )
    emptyBtn.click(**reset_args)

demo.title = "LI Chat"
#demo.queue(concurrency_count=1).launch(share=True) 
demo.queue(concurrency_count=1).launch()