File size: 5,289 Bytes
42e4b45
 
 
71b10ba
d47e311
105a92b
424d655
a071670
7eae8b4
dc1552d
 
 
60e77fc
42e4b45
105a92b
 
42e4b45
 
1a6385b
20b9f6b
12314d7
1a6385b
ba89856
2d71825
 
42e4b45
 
 
 
 
 
f27cc4a
1a6385b
9dab425
 
 
 
fb8313c
a6b4caa
42e4b45
 
eade0aa
8715868
42e4b45
 
6139770
 
 
 
 
 
 
 
 
 
da910f1
 
12314d7
42e4b45
 
 
 
 
 
 
 
 
 
 
 
 
 
ba89856
42e4b45
 
 
ff59394
42e4b45
 
 
 
 
 
 
 
 
 
 
f8829d9
42e4b45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff59394
42e4b45
 
 
 
 
 
 
ff59394
42e4b45
 
 
 
 
 
 
 
ba89856
42e4b45
 
 
 
 
 
 
ba89856
42e4b45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import gradio as gr
import numpy as np
import random
import spaces
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
import torch
from diffusers import DiffusionPipeline ,StableDiffusionPipeline#, FlowMatchEulerDiscreteScheduler, FluxTransformer2DModel
#from diffusers import FluxPipeline
from huggingface_hub import login
import os 
a=os.getenv('hf_tok')
login(token=a )





device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/sdxl-turbo" # "stable-diffusion-v1-5/stable-diffusion-v1-5"  # Replace to the model you would like to use
#model_repo_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
#model_repo_id = "cagliostrolab/animagine-xl-4.0"
#model_repo_id = "stabilityai/stable-diffusion-xl-base-1.0"
#model_repo_id ="black-forest-labs/FLUX.1-dev"



if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
#pipe.load_lora_weights("RearViewXLV2-CruzFlesh.safetensors") #prompt fo this lora
                                                             #huge muscle man in the kitchen ,
                                                             #a naked man with loose curl messy blonde hair, rear view,
                                                             #<lora:RearViewXlV2-CruzFlesh:0.75>, hairy ass,  asshole

pipe.load_lora_weights("HairyManXLV1-CruzFlesh.safetensors")
pipe.load_lora_weights("FaceNpenisV4XL.safetensors")
pipe = pipe.to(device)



MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
"""rear view
a naked man from behind
a man on all fours
testicles
toes
asshole
penis
hairy ass
hands on ass
saggy balls"""


@spaces.GPU(duration=25) #[uncomment to use ZeroGPU]
def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed


examples = [
    "cinematic , cat at table in the room "
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image Gradio Template")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,  # Replace with defaults that work for your model
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=0.0,  # Replace with defaults that work for your model
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=3,  # Replace with defaults that work for your model
                )

        gr.Examples(examples=examples, inputs=[prompt])
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()