Spaces:
Running
Running
File size: 5,289 Bytes
42e4b45 71b10ba d47e311 105a92b 424d655 a071670 7eae8b4 dc1552d 60e77fc 42e4b45 105a92b 42e4b45 1a6385b 20b9f6b 12314d7 1a6385b ba89856 2d71825 42e4b45 f27cc4a 1a6385b 9dab425 fb8313c a6b4caa 42e4b45 eade0aa 8715868 42e4b45 6139770 da910f1 12314d7 42e4b45 ba89856 42e4b45 ff59394 42e4b45 f8829d9 42e4b45 ff59394 42e4b45 ff59394 42e4b45 ba89856 42e4b45 ba89856 42e4b45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import gradio as gr
import numpy as np
import random
import spaces
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
import torch
from diffusers import DiffusionPipeline ,StableDiffusionPipeline#, FlowMatchEulerDiscreteScheduler, FluxTransformer2DModel
#from diffusers import FluxPipeline
from huggingface_hub import login
import os
a=os.getenv('hf_tok')
login(token=a )
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/sdxl-turbo" # "stable-diffusion-v1-5/stable-diffusion-v1-5" # Replace to the model you would like to use
#model_repo_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
#model_repo_id = "cagliostrolab/animagine-xl-4.0"
#model_repo_id = "stabilityai/stable-diffusion-xl-base-1.0"
#model_repo_id ="black-forest-labs/FLUX.1-dev"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
#pipe.load_lora_weights("RearViewXLV2-CruzFlesh.safetensors") #prompt fo this lora
#huge muscle man in the kitchen ,
#a naked man with loose curl messy blonde hair, rear view,
#<lora:RearViewXlV2-CruzFlesh:0.75>, hairy ass, asshole
pipe.load_lora_weights("HairyManXLV1-CruzFlesh.safetensors")
pipe.load_lora_weights("FaceNpenisV4XL.safetensors")
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
"""rear view
a naked man from behind
a man on all fours
testicles
toes
asshole
penis
hairy ass
hands on ass
saggy balls"""
@spaces.GPU(duration=25) #[uncomment to use ZeroGPU]
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
examples = [
"cinematic , cat at table in the room "
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image Gradio Template")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512, # Replace with defaults that work for your model
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=0.0, # Replace with defaults that work for your model
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=3, # Replace with defaults that work for your model
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|