File size: 4,589 Bytes
68ba2e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import time
import gradio as gr
from transformers import pipeline
import numpy as np
from openai import OpenAI
import threading
import queue

transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
qa_model = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")

class PubSub:
    def __init__(self):
        self.subscribers = []

    def subscribe(self, callback):
        self.subscribers.append(callback)

    def publish(self, message):
        for subscriber in self.subscribers:
            subscriber(message)

def predict(message, history, api_key, is_paused, pubsub):
    def run_prediction():
        client = OpenAI(api_key=api_key)
        history_openai_format = []
        for human, assistant in history:
            history_openai_format.append({"role": "user", "content": human})
            history_openai_format.append({"role": "assistant", "content": assistant})
        history_openai_format.append({"role": "user", "content": message})

        response = client.chat.completions.create(
            model='gpt-4o',
            messages=history_openai_format,
            temperature=1.0,
            stream=True
        )

        partial_message = ""
        for chunk in response:
            if is_paused[0]:
                while is_paused[0]:
                    time.sleep(0.1)
            if chunk.choices[0].delta.content:
                partial_message += chunk.choices[0].delta.content
                pubsub.publish(partial_message)

    thread = threading.Thread(target=run_prediction)
    thread.start()

def chat_with_api_key(api_key, message, history, is_paused):
    pubsub = PubSub()
    result_queue = queue.Queue()

    def update_message(partial_message):
        result_queue.put(partial_message)

    pubsub.subscribe(update_message)
    predict(message, history, api_key, is_paused, pubsub)

    while True:
        try:
            accumulated_message = result_queue.get(timeout=0.1)
            history.append((message, accumulated_message))
            yield message, [[message, accumulated_message]]
        except queue.Empty:
            if not any(thread.is_alive() for thread in threading.enumerate() if thread != threading.current_thread()):
                break

def transcribe(audio):
    if audio is None:
        return "No audio recorded."
    sr, y = audio
    y = y.astype(np.float32)
    y /= np.max(np.abs(y))
    return transcriber({"sampling_rate": sr, "raw": y})["text"]

def answer(transcription):
    context = "You are a chatbot answering general questions"
    result = qa_model(question=transcription, context=context)
    return result['answer']

def process_audio(audio):
    if audio is None:
        return "No audio recorded.", []
    transcription = transcribe(audio)
    answer_result = answer(transcription)
    return transcription, [[transcription, answer_result]]

def update_output(api_key, audio_input, state, is_paused):
    if is_paused[0]:
        yield "", state
    else:
        message = transcribe(audio_input)
        responses = chat_with_api_key(api_key, message, state, is_paused)
        for response, updated_state in responses:
            if is_paused[0]:
                break
            yield response, updated_state

def clear_all():
    return None, "", []

def toggle_pause(is_paused):
    is_paused[0] = not is_paused[0]
    return is_paused

def update_button_label(is_paused):
    return "Resume" if is_paused[0] else "Pause"

with gr.Blocks() as demo:
    answer_output = gr.Chatbot(label="Answer Result")
    with gr.Row():    
        audio_input = gr.Audio(label="Audio Input", sources=["microphone"], type="numpy")
        with gr.Column():
            api_key = gr.Textbox(label="API Key", placeholder="Enter your API key", type="password")
            transcription_output = gr.Textbox(label="Transcription")
            clear_button = gr.Button("Clear")
            pause_button = gr.Button("Pause")
    
    state = gr.State([])
    is_paused = gr.State([False])

    audio_input.stop_recording(
        fn=update_output,
        inputs=[api_key, audio_input, state, is_paused],
        outputs=[transcription_output, answer_output]
    )
    
    clear_button.click(
        fn=clear_all,
        inputs=[],
        outputs=[audio_input, transcription_output, answer_output]
    )

    pause_button.click(
        fn=toggle_pause,
        inputs=[is_paused],
        outputs=[is_paused]
    ).then(
        fn=update_button_label,
        inputs=[is_paused],
        outputs=[pause_button]
    )

demo.launch()