Spaces:
Sleeping
Sleeping
File size: 3,470 Bytes
941d470 e6868fd a7368c8 e6868fd a7368c8 e6868fd a7368c8 e6868fd a7368c8 e6868fd a7368c8 e6868fd a7368c8 e6868fd a7368c8 e6868fd a7368c8 e6868fd a7368c8 e6868fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
import gradio as gr
from transformers import pipeline
import numpy as np
from openai import OpenAI
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
qa_model = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
def predict(message, history, api_key):
print('in predict')
client = OpenAI(api_key=api_key)
history_openai_format = []
for human, assistant in history:
history_openai_format.append({"role": "user", "content": human})
history_openai_format.append({"role": "assistant", "content": assistant})
history_openai_format.append({"role": "user", "content": message})
response = client.chat.completions.create(
model='gpt-4o',
messages=history_openai_format,
temperature=1.0,
stream=True
)
partial_message = ""
for chunk in response:
if chunk.choices[0].delta.content:
print(111, chunk.choices[0].delta.content)
partial_message += chunk.choices[0].delta.content
yield partial_message
def chat_with_api_key(api_key, message, history):
print('in chat_with_api_key')
accumulated_message = ""
for partial_message in predict(message, history, api_key):
accumulated_message = partial_message
history.append((message, accumulated_message))
# yield accumulated_message, history
yield message,[[message, accumulated_message]]
def transcribe(audio):
if audio is None:
return "No audio recorded."
sr, y = audio
y = y.astype(np.float32)
y /= np.max(np.abs(y))
return transcriber({"sampling_rate": sr, "raw": y})["text"]
def answer(transcription):
context = "You are a chatbot answering general questions"
result = qa_model(question=transcription, context=context)
return result['answer']
def process_audio(audio):
if audio is None:
return "No audio recorded.", []
transcription = transcribe(audio)
answer_result = answer(transcription)
return transcription, [[transcription, answer_result]]
def update_output(api_key, audio_input, state):
print('in update_output')
message = transcribe(audio_input)
responses = chat_with_api_key(api_key, message, state)
accumulated_response = ""
for response, updated_state in responses:
accumulated_response = response
yield accumulated_response, updated_state
def clear_all():
return None, "", []
with gr.Blocks() as demo:
answer_output = gr.Chatbot(label="Answer Result")
with gr.Row():
audio_input = gr.Audio(label="Audio Input", sources=["microphone"], type="numpy")
with gr.Column():
api_key = gr.Textbox(label="API Key", placeholder="Enter your API key", type="password")
transcription_output = gr.Textbox(label="Transcription")
clear_button = gr.Button("Clear")
state = gr.State([])
if 1:
audio_input.stop_recording(
fn=update_output,
inputs=[api_key, audio_input, state],
outputs=[transcription_output, answer_output]
)
if 0:
audio_input.stop_recording(
fn=process_audio,
inputs=[audio_input],
outputs=[transcription_output, answer_output]
)
clear_button.click(
fn=clear_all,
inputs=[],
outputs=[audio_input, transcription_output, answer_output]
)
demo.launch()
|