File size: 18,144 Bytes
5d150cb
 
 
bbbb56c
5d150cb
 
6894106
ece449a
547947e
bde9b8e
5d150cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bde9b8e
a283061
 
5d150cb
 
 
a283061
 
bbbb56c
d386126
5d150cb
 
 
 
 
 
 
 
bde9b8e
a283061
 
5d150cb
 
 
a283061
 
bbbb56c
d386126
5d150cb
 
 
 
 
 
 
bde9b8e
a283061
 
5d150cb
 
 
a283061
d386126
93a0a1e
5d150cb
 
 
 
 
 
 
 
a283061
 
 
 
 
bde9b8e
5d150cb
 
a283061
 
5d150cb
a283061
9a7adef
 
5d150cb
a283061
 
 
 
d386126
 
9a7adef
 
5d150cb
 
 
a283061
 
5d150cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d274a6d
a283061
 
5d150cb
 
 
a283061
 
d386126
5d150cb
 
 
 
 
 
 
 
 
d274a6d
a283061
 
5d150cb
 
 
a283061
 
d386126
5d150cb
 
 
 
 
 
 
 
 
 
 
 
 
 
4eb456f
 
5d150cb
 
 
4eb456f
5d150cb
 
 
 
 
4eb456f
5d150cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eb456f
5d150cb
 
 
 
 
 
 
 
4eb456f
9a7adef
5406cd8
5d150cb
 
 
 
5406cd8
5d150cb
4eb456f
5406cd8
 
5d150cb
 
 
 
 
 
 
 
 
 
 
ece449a
5d150cb
 
 
 
 
 
 
 
 
 
ece449a
 
5d150cb
 
 
6894106
5d150cb
bde9b8e
4eb456f
 
 
a283061
9a7adef
 
4eb456f
 
 
a283061
bbbb56c
9a7adef
4eb456f
 
 
 
ece449a
4eb456f
ece449a
6894106
bde9b8e
4eb456f
 
 
a283061
9a7adef
 
4eb456f
 
 
a283061
4eb456f
743cfd6
9a7adef
 
4eb456f
 
ece449a
4eb456f
ece449a
6894106
4eb456f
 
 
a283061
9a7adef
 
4eb456f
 
 
a283061
d274a6d
9a7adef
 
4eb456f
 
ece449a
4eb456f
ece449a
6894106
5d150cb
4eb456f
 
 
5d150cb
 
 
 
 
 
9a7adef
 
4eb456f
 
 
5d150cb
 
 
 
 
9a7adef
 
5d150cb
 
 
 
 
ece449a
5d150cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eb456f
ece449a
6894106
5d150cb
 
 
 
 
bde9b8e
d386126
5d150cb
9a7adef
 
5d150cb
 
 
bbbb56c
9a7adef
5d150cb
ece449a
d386126
5d150cb
 
 
 
 
 
6894106
ece449a
bde9b8e
5d150cb
 
6894106
4989364
5d150cb
 
d386126
bbbb56c
648949f
4989364
5d150cb
 
 
4989364
bde9b8e
a60e987
 
bbbb56c
 
 
bde9b8e
 
a60e987
 
 
bbbb56c
 
 
 
bde9b8e
a60e987
bbbb56c
 
 
bde9b8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d150cb
 
 
6894106
5d150cb
d274a6d
5d150cb
e377cdc
 
5d150cb
 
 
 
 
 
e377cdc
d274a6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e377cdc
 
ece449a
5d150cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d274a6d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
from __future__ import annotations

import math
import os
from pathlib import Path
from typing import Literal

import numpy as np
from PIL import Image, ImageEnhance
from smolagents import tool

# ---------------------------------------------------------------------------
# Helper utilities
# ---------------------------------------------------------------------------


def _to_numpy(img: Image.Image) -> np.ndarray:
    """Convert a ``PIL.Image`` to a ``float32`` NumPy array in the `[0, 1]` range.

    Args:
        img (PIL.Image.Image): Input image in RGB mode.

    Returns:
        np.ndarray: Array of shape *(H, W, 3)* with values ∈ [0, 1].
    """
    return np.asarray(img).astype(np.float32) / 255.0


def _to_image(arr: np.ndarray) -> Image.Image:
    """Convert a `[0, 1]` NumPy array back to an 8‑bit ``PIL.Image``.

    Args:
        arr (np.ndarray): Image data scaled to the `[0, 1]` range.

    Returns:
        PIL.Image.Image: 8‑bit RGB image.
    """
    arr_uint8 = np.clip(arr * 255.0 + 0.5, 0, 255).astype(np.uint8)
    return Image.fromarray(arr_uint8)


# ---------------------------------------------------------------------------
# Basic global adjustments
# ---------------------------------------------------------------------------


@tool
def adjust_contrast(img: Image.Image, factor: float) -> Image.Image:
    """Adjust global contrast.

    Args:
        img (PIL.Image.Image): Input image.
        factor (float): Contrast multiplier. `1.0` leaves the image unchanged;
            values > 1 increase contrast and values < 1 flatten it.
            A factor of 1.1 is a lot. A factor of 1.02 is a delicate modification .


    Returns:
        PIL.Image.Image: Contrast‑adjusted image.

    """
    return ImageEnhance.Contrast(img).enhance(factor)


@tool
def adjust_exposure(img: Image.Image, ev: float) -> Image.Image:
    """Adjust exposure by a given EV (Exposure Value) offset.

    Args:
        img (PIL.Image.Image): Input image.
        ev (float): Exposure compensation in stops. `+1` doubles brightness,
            `‑1` halves it.
            a ev of 0.2 is a lot. a ev of 0.05 is a delicate modification .


    Returns:
        PIL.Image.Image: Exposure‑adjusted image.
    """
    return _to_image(_to_numpy(img) * (2.0**ev))


@tool
def adjust_saturation(img: Image.Image, factor: float) -> Image.Image:
    """Adjust global saturation.

    Args:
        img (PIL.Image.Image): Input image.
        factor (float): Saturation multiplier. Values > 1 intensify colour and
            values < 1 desaturate. `factor *= 1.10` (or `0.90`) yields a ± 10 % change.
            a factor of 1.5 is a lot. a factor of 1.1 is a delicate modification .

    Returns:
        PIL.Image.Image: Saturation‑adjusted image.

    """
    return ImageEnhance.Color(img).enhance(factor)


# ---------------------------------------------------------------------------
# Shadows / Highlights
# ---------------------------------------------------------------------------


@tool
def adjust_shadows_highlights(
    img: Image.Image,
    shadow: float = 1.0,
    highlight: float = 1.0,
) -> Image.Image:
    """Lift shadows or tame highlights.

    Args:
        img (PIL.Image.Image): Input image.
        shadow (float, optional): Multiplier applied mainly to dark tones.
            Defaults to `1.0`. Values > 1 brighten shadows; < 1 darken them.
        highlight (float, optional): Multiplier applied mainly to bright tones.
            Defaults to `1.0`. Values < 1 recover detail; > 1 brighten further.
        Here, variations of 1, are a lot.
        Variations under 0.2 are not noticeable.

    Returns:
        PIL.Image.Image: Image with adjusted shadows/highlights.

    Notes:
        A 10 % shadow lift is `shadow *= 1.10`; a 10 % highlight cut is
        `highlight *= 0.90`.
    """
    arr = _to_numpy(img)
    lum = arr.mean(axis=2, keepdims=True)
    shadow_mask = np.clip(1.0 - lum * 2.0, 0.0, 1.0)
    highlight_mask = np.clip((lum - 0.5) * 2.0, 0.0, 1.0)
    arr = arr * (shadow_mask * (shadow - 1.0) + 1.0)
    arr = arr * (highlight_mask * (highlight - 1.0) + 1.0)
    return _to_image(arr)


# ---------------------------------------------------------------------------
# White‑balance: Temperature & Tint
# ---------------------------------------------------------------------------


# @tool
def adjust_temperature(img: Image.Image, delta: int) -> Image.Image:
    """Shift white‑balance temperature.

    Args:
        img (PIL.Image.Image): Input image.
        delta (int): Temperature shift in *mireds*. Positive values warm the
            image (yellow/red); negative values cool it (blue).
            You should not beyond ± 700 mired.

    Returns:
        PIL.Image.Image: Temperature‑adjusted image.
    """
    arr = _to_numpy(img)
    r_scale, b_scale = 1.0 + delta * 4e-4, 1.0 - delta * 4e-4
    return _to_image(arr * np.array([r_scale, 1.0, b_scale], dtype=np.float32))


# @tool
def adjust_tint(img: Image.Image, delta: int) -> Image.Image:
    """Shift white‑balance tint between green and magenta.

    Args:
        img (PIL.Image.Image): Input image.
        delta (int): Tint shift. Positive values push toward magenta; negative
            values toward green.
            You should not go beyond ± 150. Changes under 40 are barely noticeable.

    Returns:
        PIL.Image.Image: Tint‑adjusted image.
    """
    arr = _to_numpy(img)
    g_scale, rb_scale = 1.0 - delta * 5e-4, 1.0 + delta * 5e-4
    return _to_image(arr * np.array([rb_scale, g_scale, rb_scale], dtype=np.float32))


# ---------------------------------------------------------------------------
# RGB ⇄ HSL helpers
# ---------------------------------------------------------------------------


@tool
def rgb_to_hsl(img: Image.Image) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
    """Vectorised RGB→HSL conversion.

    Args:
        img: PIL.Image.Image: 8‑bit RGB image.

    Returns:
        Tuple[np.ndarray, np.ndarray, np.ndarray]: Hue, Saturation, Lightness
        arrays each in `[0, 1]` and shape *(H, W)*.
    """
    arr = _to_numpy(img)
    r, g, b = arr[..., 0], arr[..., 1], arr[..., 2]
    maxc, minc = arr.max(axis=2), arr.min(axis=2)
    li = (maxc + minc) / 2.0
    s = np.zeros_like(li)
    diff = maxc - minc
    mask = diff != 0
    lesser = li < 0.5
    s[mask & lesser] = diff[mask & lesser] / (maxc + minc)[mask & lesser]
    s[mask & ~lesser] = diff[mask & ~lesser] / (2.0 - maxc - minc)[mask & ~lesser]
    h = np.zeros_like(li)
    rc, gc, bc = (maxc - r) / (diff + 1e-20), (maxc - g) / (diff + 1e-20), (maxc - b) / (diff + 1e-20)
    h[maxc == r] = (bc - gc)[maxc == r]
    h[maxc == g] = 2.0 + (rc - bc)[maxc == g]
    h[maxc == b] = 4.0 + (gc - rc)[maxc == b]
    h = (h / 6.0) % 1.0
    h[~mask] = 0.0
    return h, s, li


def hsl_to_rgb(h: np.ndarray, s: np.ndarray, li: np.ndarray) -> np.ndarray:
    """Vectorised HSL→RGB conversion.

    Args:
        h (np.ndarray): Hue channel `[0, 1]`.
        s (np.ndarray): Saturation channel `[0, 1]`.
        li (np.ndarray): Lightness channel `[0, 1]`.

    Returns:
        PIL.Image.Image: 8‑bit RGB image.
    """

    def _f(n: float) -> np.ndarray:
        k = (n + h * 12.0) % 12.0
        a = s * np.minimum(li, 1.0 - li)
        return li - a * np.clip(np.minimum(np.minimum(k - 3.0, 9.0 - k), 1.0), -1.0, 1.0)

    r, g, b = _f(0.0), _f(8.0), _f(4.0)
    return _to_image(np.stack([r, g, b], axis=-1))


# Hue centres and +/- half‑widths (degrees) taken from Adobe’s HSL model
COLOR_RANGES: dict[str, tuple[float, float]] = {
    "red": (345, 15),  # 345° → 15° (wraps around 0)
    "orange": (15, 45),
    "yellow": (45, 75),
    "green": (75, 165),
    "aqua": (165, 195),
    "blue": (195, 255),
    "purple": (255, 285),
    "magenta": (285, 345),
}

ColorName = Literal[
    "red",
    "orange",
    "yellow",
    "green",
    "aqua",
    "blue",
    "purple",
    "magenta",
]


def _range_for(color: ColorName) -> tuple[float, float]:
    start, end = COLOR_RANGES[color]
    return start % 360, end % 360


@tool
def adjust_hue_color(
    h: np.ndarray, s: np.ndarray, li: np.ndarray, color: ColorName, delta: float
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
    """Shift the **hue** of a specific colour bucket.

    Args:
        h (np.ndarray): Hue channel `[0, 1]`.
        s (np.ndarray): Saturation channel `[0, 1]`.
        li (np.ndarray): Lightness channel `[0, 1]`.
        color (ColorName): Colour family to target [red, orange, yellow, green, aqua, blue, purple, magenta]
        delta (float): Hue shift *in degrees*. 15 degrees is good increment. 40 is a lot. 5 is a delicate modification .

    Returns:
        Tuple[np.ndarray, np.ndarray, np.ndarray]: Hue, Saturation, Lightness
        arrays each in `[0, 1]` and shape *(H, W)*.

    """
    return adjust_hsl_channel(h, s, li, _range_for(color), h_delta=delta)


@tool
def adjust_saturation_color(
    h: np.ndarray, s: np.ndarray, li: np.ndarray, color: ColorName, factor: float
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
    """Change **saturation** of a specific colour bucket.

    Args:
        h (np.ndarray): Hue channel `[0, 1]`.
        s (np.ndarray): Saturation channel `[0, 1]`.
        li (np.ndarray): Lightness channel `[0, 1]`.
        color (ColorName): Colour family to target [red, orange, yellow, green, aqua, blue, purple, magenta]
        factor (float): Saturation multiplier. Factor under +/- 0.1 are delicate modifications.
            Factor of 0.2 and 1.8 are very strong variations.

    Returns:
        Tuple[np.ndarray, np.ndarray, np.ndarray]: Hue, Saturation, Lightness
        arrays each in `[0, 1]` and shape *(H, W)*.
    """
    return adjust_hsl_channel(h, s, li, _range_for(color), s_factor=factor)


def adjust_luminance_color(
    h: np.ndarray, s: np.ndarray, li: np.ndarray, color: ColorName, factor: float
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
    """Change **luminance** (Lightness) of a specific colour bucket.

    Args:
        h (np.ndarray): Hue channel `[0, 1]`.
        s (np.ndarray): Saturation channel `[0, 1]`.
        li (np.ndarray): Lightness channel `[0, 1]`.
        color (ColorName): Colour family to target[red, orange, yellow, green, aqua, blue, purple, magenta]
        factor (float): Luminance multiplier. The allowed maximum is 0.1 variation. 0.05 is a delicate modication.

    Returns:
        Tuple[np.ndarray, np.ndarray, np.ndarray]: Hue, Saturation, Lightness
        arrays each in `[0, 1]` and shape *(H, W)*.
    """
    return adjust_hsl_channel(h, s, li, _range_for(color), l_factor=factor)


def adjust_hsl_channel(
    h: np.ndarray,
    s: np.ndarray,
    li: np.ndarray,
    hue_range: tuple[float, float],
    h_delta: float = 0.0,
    s_factor: float = 1.0,
    l_factor: float = 1.0,
) -> Image.Image:
    """Adjust Hue, Saturation, or Lightness for pixels within a hue slice.

    Args:
        h (np.ndarray): Hue channel `[0, 1]`.
        s (np.ndarray): Saturation channel `[0, 1]`.
        li (np.ndarray): Lightness channel `[0, 1]`.
        hue_range (Tuple[float, float]): Start and end hue in degrees `[0, 360)`.
            The range may wrap past 360° (e.g. `(350, 20)` selects reds).
        h_delta (float, optional): Hue shift in degrees. Defaults to `0.0`.
        s_factor (float, optional): Saturation multiplier. Defaults to `1.0`.
        l_factor (float, optional): Lightness multiplier. Defaults to `1.0`.

    Returns:
        PIL.Image.Image: Image with per‑hue HSL adjustment applied.

    Notes:
        Typical 10 % tweaks: `h_delta ≈ ±10°`, `s_factor *= 1.10`,
        `l_factor *= 1.10` (or `0.90`).
    """
    h_start, h_end = np.deg2rad(hue_range[0]), np.deg2rad(hue_range[1])
    h_rad = h * 2 * math.pi
    if hue_range[0] <= hue_range[1]:
        mask = (h_rad >= h_start) & (h_rad <= h_end)
    else:
        mask = (h_rad >= h_start) | (h_rad <= h_end)

    h_new = h.copy()
    s_new = s.copy()
    l_new = li.copy()

    h_new[mask] = (h[mask] + h_delta / 360.0) % 1.0
    s_new[mask] = np.clip(s[mask] * s_factor, 0.0, 1.0)
    l_new[mask] = np.clip(li[mask] * l_factor, 0.0, 1.0)

    return h_new, s_new, l_new


# ---------------------------------------------------------------------------
# Creative effects
# ---------------------------------------------------------------------------


@tool
def add_vignette(img: Image.Image, strength: float = 0.5) -> Image.Image:
    """Add a radial vignette.

    Args:
        img (PIL.Image.Image): Input image.
        strength (float, optional): Corner darkening amount in `[0, 1]`. Defaults
            to `0.5`. `strength *= 1.10` boosts the vignette ~10 %.
        A strength of 1 is the maximum a lot. Under 0.2 is a delicate modification .
    Returns:
        PIL.Image.Image: Vignetted image.
    """
    softness = 0.5
    w, h = img.size
    cx, cy = w / 2, h / 2
    y, x = np.ogrid[:h, :w]
    r = np.sqrt((x - cx) ** 2 + (y - cy) ** 2)
    mask = 1.0 - strength * ((r / r.max()) ** (softness * 4.0))
    return _to_image(_to_numpy(img) * mask[..., None])


@tool
def add_grain(img: Image.Image, amount: float = 0.05) -> Image.Image:
    """Add monochromatic Gaussian grain.

    Args:
        img (PIL.Image.Image): Input image.
        amount (float, optional): Noise standard deviation in the `[0, 1]`
            domain.
            An amount of 0.01 is a delicate modification . The max is 0.1.
            In classic usage 0.02 is a good start.
    """
    noise = np.random.normal(0.0, amount, _to_numpy(img).shape).astype(np.float32)
    return _to_image(_to_numpy(img) + noise)


@tool
def save_image(h: np.ndarray, s: np.ndarray, li: np.ndarray, output_directory: str) -> None:
    """Save an HSL image as a JPEG file in the specified directory.

    The image will be saved with a filename of the form "trial_N.jpeg", where N is the
    current count of JPEG files in the directory.

    Args:
        h (np.ndarray): Hue channel `[0, 1]`.
        s (np.ndarray): Saturation channel `[0, 1]`.
        li (np.ndarray): Lightness channel `[0, 1]`.
        output_directory (str): Path to the output directory.

    Returns:
        str: The full path to the saved image file.
    """
    img = hsl_to_rgb(h, s, li)
    nb_iter = str(len([f for f in os.listdir(output_directory) if f.endswith(".jpeg")]))
    output_path = os.path.join(output_directory, f"trial_{nb_iter}.jpeg")
    img.save(output_path, format="JPEG", quality=95)


@tool
def load_image(path: str) -> Image.Image:
    """Load an image from a file.

    Args:
        path (str): File path to the image.

    Returns:
        PIL.Image.Image: Loaded image in RGB mode.
    """
    return Image.open(path).convert("RGB")


# ---------------------------------------------------------------------------
# Demo pipeline
# ---------------------------------------------------------------------------


def demo_all(input_path: str, output_dir: str | Path = "demo_out") -> None:
    """Run every adjustment once and save results.

    Args:
        input_path (str): Path to the source image file.
        output_dir (str | Path, optional): Directory to write results. Defaults
            to ``"demo_out"``.

    Returns:
        Dict[str, str]: Mapping of effect name to the saved file path.
    """
    img = load_image(path=input_path)

    # Apply global RGB adjustments in sequence
    # 2. Reduced exposure (moderately)
    img = adjust_exposure(img=img, ev=0.05)  # Decreased from 0.1 as per feedback

    # 1. Reduced contrast (significantly)
    img = adjust_contrast(img=img, factor=1.03)  # From 1.1 to 1.03 (delicate contrast increase)

    # 3. Reduced global saturation
    img = adjust_saturation(img=img, factor=1.1)  # From 1.2 to 1.1 (moderate enhancement)

    # 5. Subtler shadows/highlights
    img = adjust_shadows_highlights(img=img, shadow=1.05, highlight=0.95)  # From 1.1  # From 0.9 to 0.95

    # 7. Remove vignette
    img = add_vignette(img=img, strength=0.0)  # Set to min per feedback

    # 8. Remove grain
    img = add_grain(img=img, amount=0.0)  # No grain

    # Convert to HSL for color-specific modifications
    h, s, li = rgb_to_hsl(img)

    # 3(a) Reduced blue saturation
    h, s, li = adjust_saturation_color(h=h, s=s, li=li, color="blue", factor=1.3)  # From 1.5 to 1.3

    # 3(b) Reduced red & yellow saturation
    for color in ["red", "yellow"]:
        h, s, li = adjust_saturation_color(h=h, s=s, li=li, color=color, factor=1.1)  # From 1.2 to 1.1

    # 4. Adjusted hue (reduced intensity)
    # Red/orange toward amber
    h, s, li = adjust_hue_color(h=h, s=s, li=li, color="red", delta=10)  # From 15° to 10°
    h, s, li = adjust_hue_color(h=h, s=s, li=li, color="orange", delta=10)  # From 15° to 10°

    # Blue cooling (reduced effect)
    h, s, li = adjust_hue_color(h=h, s=s, li=li, color="blue", delta=-10)  # From -15° to -10°

    # 6. Adjusted luminance (reduced effect)
    # Blue luminance boost (reduced)
    # h, s, li = adjust_luminance_color(
    #     h=h, s=s, li=li,
    #     color='blue',
    #     factor=1.05  # From 1.1 to 1.05
    # )

    # # Orange luminance (adjusted)
    # h, s, li = adjust_luminance_color(
    #     h=h, s=s, li=li,
    #     color='orange',
    #     factor=0.95  # From 0.9 to 0.95
    # )

    # Save the processed image
    print(output_dir)
    save_image(h, s, li, output_directory=output_dir)


if __name__ == "__main__":
    import argparse
    import tempfile

    parser = argparse.ArgumentParser(description="Run all photo adjustments on an image.")
    parser.add_argument("--input", "-i", type=str, help="Path to the input image file.")
    parser.add_argument(
        "--output_dir",
        "-o",
        type=str,
        default=None,
        help="Directory to save the output images.",
    )
    args = parser.parse_args()

    if not args.output_dir:
        args.output_dir = tempfile.mkdtemp(prefix="photo_adjustments_")

    demo_all(args.input, args.output_dir)