File size: 26,972 Bytes
1ef58ee
 
 
 
 
 
 
 
 
 
 
d05d9d8
3baf99a
 
9a46da5
 
3baf99a
 
b1d592c
 
3baf99a
 
 
5d40291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79f114e
 
 
 
 
 
5d40291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79f114e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d40291
 
 
3baf99a
81fc601
1ef58ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81fc601
1ef58ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3baf99a
 
 
1ef58ee
81fc601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ef58ee
d05d9d8
5d40291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81fc601
5d40291
 
 
 
 
1ef58ee
81fc601
 
 
 
 
1ef58ee
 
bd0b666
1ef58ee
 
 
 
a4a8904
81fc601
 
 
 
 
1ef58ee
a4a8904
 
 
 
65f7993
 
1ef58ee
 
 
a4a8904
 
 
 
65f7993
 
1ef58ee
 
 
 
 
bd0b666
 
 
1ef58ee
 
 
 
 
 
bd0b666
 
1ef58ee
 
 
 
 
 
bd0b666
 
 
 
 
 
1ef58ee
bd0b666
 
 
 
1ef58ee
 
9b382e3
 
 
 
 
 
 
 
 
 
d05d9d8
9b382e3
1ef58ee
 
d05d9d8
 
4bf4abc
 
d05d9d8
 
 
 
4bf4abc
d05d9d8
 
 
 
1ef58ee
 
bd0b666
 
 
1ef58ee
 
4bf4abc
bd0b666
 
 
0360399
4bf4abc
0360399
4bf4abc
bd0b666
 
7b43a09
 
bd0b666
 
 
1ef58ee
 
 
 
 
 
a4a8904
65f7993
 
81fc601
3baf99a
1ef58ee
 
 
 
 
 
 
 
 
 
a4a8904
 
65f7993
 
 
 
81fc601
 
1ef58ee
 
 
 
 
 
3baf99a
 
 
 
 
 
bd0b666
 
 
 
 
 
 
 
 
3baf99a
 
 
 
 
1ef58ee
 
 
 
 
 
 
 
9b382e3
 
 
 
 
 
1ef58ee
 
 
 
 
 
 
 
8b5abf6
 
9a46da5
76e4363
9a46da5
 
 
 
1ef58ee
 
9a46da5
 
 
 
 
1ef58ee
 
 
 
 
 
e5b38af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ef58ee
 
 
81fc601
1ef58ee
 
 
 
81fc601
 
76e4363
1ef58ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4a8904
76e4363
 
65f7993
 
1ef58ee
 
3baf99a
 
1ef58ee
 
3baf99a
 
 
 
 
 
 
 
 
c6e4690
 
 
3baf99a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a46da5
 
 
 
 
 
 
3baf99a
9a46da5
3baf99a
9a46da5
3baf99a
9a46da5
 
 
 
 
9b382e3
3baf99a
 
 
 
 
1ef58ee
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
"""Script to produce radial plots."""

from functools import partial
import plotly.graph_objects as go
import json
import numpy as np
from collections import defaultdict
import pandas as pd
from pydantic import BaseModel
import gradio as gr
import requests
import random
import logging
import datetime as dt
import scipy.stats as stats
import itertools as it


fmt = "%(asctime)s [%(levelname)s] <%(name)s> %(message)s"
logging.basicConfig(level=logging.INFO, format=fmt)
logger = logging.getLogger("radial_plot_generator")


INTRO_MARKDOWN = """
# Radial Plot Generator

This demo allows you to generate a radial plot comparing the performance of different
language models on different tasks. It is based on the generative results from the
[ScandEval benchmark](https://scandeval.com).
"""


ABOUT_MARKDOWN = """
## About the ScandEval Benchmark

The [ScandEval benchmark](https://scandeval.com) is used compare pretrained language
models on tasks in Danish, Swedish, Norwegian Bokmål, Norwegian Nynorsk, Icelandic,
Faroese, German, Dutch and English. The benchmark supports both encoder models (such as
BERT) and generative models (such as GPT), and leaderboards for both kinds [are
available](https://scandeval.com).

The generative models are evaluated using in-context learning with few-shot prompts.
The few-shot examples are sampled randomly from the training split, and we benchmark
the models 10 times with bootstrapped test sets and different few-shot examples in each
iteration. This allows us to better measure the uncertainty of the results. We use the
uncertainty in the radial plot when we compute the win ratios (i.e., the percentage of
other models that a model beats on a task). Namely, we compute the win ratio as the
percentage of other models that a model _significantly_ beats on a task, where we use a
paired t-test with a significance level of 0.05 to determine whether a model
significantly beats another model.

## The Benchmark Datasets

The ScandEval generative benchmark currently covers the languages Danish, Swedish,
Norwegian, Icelandic, German, Dutch and English. For each language, the benchmark
consists of 7 different tasks, each of which consists of 1-2 datasets. The tasks are
the following:

### Text Classification
Given a piece of text, classify it into a number of classes. For this task we extract
the first token of the possible labels, and choose the label whose first token has the
highest probability. All datasets in this category are currently trinary sentiment
classification datasets. We use the Matthews Correlation Coefficient (MCC) as the
evaluation metric.

### Information Extraction
Given a piece of text, extract a number of entities from the text. As the model needs
to extract multiple entities, we use [structured
generation](https://github.com/noamgat/lm-format-enforcer) to make the model generate a
JSON dictionary with keys being the entity categories and values being lists of the
identified entities. All datasets in this task are named entity recognition datasets.
We use the micro-averaged F1 score as the evaluation metric, where we ignore the
Miscellaneous category.

### Grammar
Given a piece of text, determine whether it is grammatically correct or not. All
datasets in this task are built from the dependency treebanks of the languages, where
words are removed or swapped, in a way that makes the sentence ungrammatical. We use
the Matthews Correlation Coefficient (MCC) as the evaluation metric.

### Question Answering
Given a question and a piece of text, extract the answer to the question from the text.
All datasets in this task are extractive question answering datasets. We use the exact
match (EM) score as the evaluation metric.

### Summarisation
Given a piece of text, generate a summary of the text. All the datasets come from
either news articles or WikiHow articles. We use the BERTScore metric as the evaluation
metric, where the encoder model used is
[microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base).

### Knowledge
Given a trivia-style question with multiple choice answers, choose the correct answer.
As with text classification, we use the probabilities of the answer letter (a, b, c or
d) to choose the answer. The datasets in this task are machine translated versions of
the [MMLU](https://doi.org/10.48550/arXiv.2009.03300) and
[ARC](https://allenai.org/data/arc) datasets. We use the Matthews Correlation
Coefficient (MCC) as the evaluation metric.

### Reasoning
Given a scenario and multiple possible endings, choose the correct ending. As with text
classification, we use the probabilities of the answer letter (a, b, c or d) to choose
the answer. The datasets in this task are machine translated versions of the
[HellaSwag](https://rowanzellers.com/hellaswag/) dataset. We use the Matthews
Correlation Coefficient (MCC) as the evaluation metric.


## Citation

If you use the ScandEval benchmark in your work, please cite [the
paper](https://aclanthology.org/2023.nodalida-1.20):

```
@inproceedings{nielsen2023scandeval,
  title={ScandEval: A Benchmark for Scandinavian Natural Language Processing},
  author={Nielsen, Dan},
  booktitle={Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)},
  pages={185--201},
  year={2023}
}
```
"""


UPDATE_FREQUENCY_MINUTES = 30
MIN_COLOUR_DISTANCE_BETWEEN_MODELS = 200


class Task(BaseModel):
    """Class to hold task information."""

    name: str
    metric: str

    def __hash__(self):
        return hash(self.name)


class Language(BaseModel):
    """Class to hold language information."""

    code: str
    name: str

    def __hash__(self):
        return hash(self.code)


class Dataset(BaseModel):
    """Class to hold dataset information."""

    name: str
    language: Language
    task: Task

    def __hash__(self):
        return hash(self.name)


TEXT_CLASSIFICATION = Task(name="text classification", metric="mcc")
INFORMATION_EXTRACTION = Task(name="information extraction", metric="micro_f1_no_misc")
GRAMMAR = Task(name="grammar", metric="mcc")
QUESTION_ANSWERING = Task(name="question answering", metric="em")
SUMMARISATION = Task(name="summarisation", metric="bertscore")
KNOWLEDGE = Task(name="knowledge", metric="mcc")
REASONING = Task(name="reasoning", metric="mcc")
ALL_TASKS = [obj for obj in globals().values() if isinstance(obj, Task)]


DANISH = Language(code="da", name="Danish")
NORWEGIAN = Language(code="no", name="Norwegian")
SWEDISH = Language(code="sv", name="Swedish")
ICELANDIC = Language(code="is", name="Icelandic")
GERMAN = Language(code="de", name="German")
DUTCH = Language(code="nl", name="Dutch")
ENGLISH = Language(code="en", name="English")
ALL_LANGUAGES = {
    obj.name: obj for obj in globals().values() if isinstance(obj, Language)
}

DATASETS = [
    Dataset(name="swerec", language=SWEDISH, task=TEXT_CLASSIFICATION),
    Dataset(name="angry-tweets", language=DANISH, task=TEXT_CLASSIFICATION),
    Dataset(name="norec", language=NORWEGIAN, task=TEXT_CLASSIFICATION),
    Dataset(name="sb10k", language=GERMAN, task=TEXT_CLASSIFICATION),
    Dataset(name="dutch-social", language=DUTCH, task=TEXT_CLASSIFICATION),
    Dataset(name="sst5", language=ENGLISH, task=TEXT_CLASSIFICATION),
    Dataset(name="suc3", language=SWEDISH, task=INFORMATION_EXTRACTION),
    Dataset(name="dansk", language=DANISH, task=INFORMATION_EXTRACTION),
    Dataset(name="norne-nb", language=NORWEGIAN, task=INFORMATION_EXTRACTION),
    Dataset(name="norne-nn", language=NORWEGIAN, task=INFORMATION_EXTRACTION),
    Dataset(name="mim-gold-ner", language=ICELANDIC, task=INFORMATION_EXTRACTION),
    Dataset(name="germeval", language=GERMAN, task=INFORMATION_EXTRACTION),
    Dataset(name="conll-nl", language=DUTCH, task=INFORMATION_EXTRACTION),
    Dataset(name="conll-en", language=ENGLISH, task=INFORMATION_EXTRACTION),
    Dataset(name="scala-sv", language=SWEDISH, task=GRAMMAR),
    Dataset(name="scala-da", language=DANISH, task=GRAMMAR),
    Dataset(name="scala-nb", language=NORWEGIAN, task=GRAMMAR),
    Dataset(name="scala-nn", language=NORWEGIAN, task=GRAMMAR),
    Dataset(name="scala-is", language=ICELANDIC, task=GRAMMAR),
    Dataset(name="scala-de", language=GERMAN, task=GRAMMAR),
    Dataset(name="scala-nl", language=DUTCH, task=GRAMMAR),
    Dataset(name="scala-en", language=ENGLISH, task=GRAMMAR),
    Dataset(name="scandiqa-da", language=DANISH, task=QUESTION_ANSWERING),
    Dataset(name="norquad", language=NORWEGIAN, task=QUESTION_ANSWERING),
    Dataset(name="scandiqa-sv", language=SWEDISH, task=QUESTION_ANSWERING),
    Dataset(name="nqii", language=ICELANDIC, task=QUESTION_ANSWERING),
    Dataset(name="germanquad", language=GERMAN, task=QUESTION_ANSWERING),
    Dataset(name="squad", language=ENGLISH, task=QUESTION_ANSWERING),
    Dataset(name="squad-nl", language=DUTCH, task=QUESTION_ANSWERING),
    Dataset(name="nordjylland-news", language=DANISH, task=SUMMARISATION),
    Dataset(name="mlsum", language=GERMAN, task=SUMMARISATION),
    Dataset(name="rrn", language=ICELANDIC, task=SUMMARISATION),
    Dataset(name="no-sammendrag", language=NORWEGIAN, task=SUMMARISATION),
    Dataset(name="wiki-lingua-nl", language=DUTCH, task=SUMMARISATION),
    Dataset(name="swedn", language=SWEDISH, task=SUMMARISATION),
    Dataset(name="cnn-dailymail", language=ENGLISH, task=SUMMARISATION),
    Dataset(name="mmlu-da", language=DANISH, task=KNOWLEDGE),
    Dataset(name="mmlu-no", language=NORWEGIAN, task=KNOWLEDGE),
    Dataset(name="mmlu-sv", language=SWEDISH, task=KNOWLEDGE),
    Dataset(name="mmlu-is", language=ICELANDIC, task=KNOWLEDGE),
    Dataset(name="mmlu-de", language=GERMAN, task=KNOWLEDGE),
    Dataset(name="mmlu-nl", language=DUTCH, task=KNOWLEDGE),
    Dataset(name="mmlu", language=ENGLISH, task=KNOWLEDGE),
    Dataset(name="arc-da", language=DANISH, task=KNOWLEDGE),
    Dataset(name="arc-no", language=NORWEGIAN, task=KNOWLEDGE),
    Dataset(name="arc-sv", language=SWEDISH, task=KNOWLEDGE),
    Dataset(name="arc-is", language=ICELANDIC, task=KNOWLEDGE),
    Dataset(name="arc-de", language=GERMAN, task=KNOWLEDGE),
    Dataset(name="arc-nl", language=DUTCH, task=KNOWLEDGE),
    Dataset(name="arc", language=ENGLISH, task=KNOWLEDGE),
    Dataset(name="hellaswag-da", language=DANISH, task=REASONING),
    Dataset(name="hellaswag-no", language=NORWEGIAN, task=REASONING),
    Dataset(name="hellaswag-sv", language=SWEDISH, task=REASONING),
    Dataset(name="hellaswag-is", language=ICELANDIC, task=REASONING),
    Dataset(name="hellaswag-de", language=GERMAN, task=REASONING),
    Dataset(name="hellaswag-nl", language=DUTCH, task=REASONING),
    Dataset(name="hellaswag", language=ENGLISH, task=REASONING),
]


def main() -> None:
    """Produce a radial plot."""

    global last_fetch
    results_dfs = fetch_results()
    last_fetch = dt.datetime.now()

    all_languages = [language.name for language in ALL_LANGUAGES.values()]
    danish_models = list({model_id for model_id in results_dfs[DANISH].index})

    # Get distinct RGB values for all models
    all_models = list(
        {model_id for df in results_dfs.values() for model_id in df.index}
    )
    colour_mapping: dict[str, tuple[int, int, int]] = dict()

    for i in it.count():
        min_colour_distance = MIN_COLOUR_DISTANCE_BETWEEN_MODELS - i

        if i > 0:
            logger.info(
                f"All retries failed. Trying again with min colour distance "
                f"{min_colour_distance}."
            )

        random.seed(4242 + i)
        retries_left = 10 * len(all_models)
        for model_id in all_models:
            r, g, b = 0, 0, 0
            too_bright, similar_to_other_model = True, True
            while (too_bright or similar_to_other_model) and retries_left > 0:
                r, g, b = tuple(random.randint(0, 255) for _ in range(3))
                too_bright = np.min([r, g, b]) > 200
                similar_to_other_model = any(
                    np.abs(
                        np.array(colour) - np.array([r, g, b])
                    ).sum() < min_colour_distance
                    for colour in colour_mapping.values()
                )
                retries_left -= 1
                logger.info(f"Retries left to find a colour mapping: {retries_left}")
            colour_mapping[model_id] = (r, g, b)

        if retries_left:
            logger.info(
                f"Successfully found a colour mapping with min colour distance "
                f"{min_colour_distance}."
            )
            break

    with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
        gr.Markdown(INTRO_MARKDOWN)

        with gr.Tab(label="Build a Radial Plot"):
            with gr.Column():
                with gr.Row():
                    language_names_dropdown = gr.Dropdown(
                        choices=all_languages,
                        multiselect=True,
                        label="Languages",
                        value=["Danish"],
                        interactive=True,
                        scale=2,
                    )
                    model_ids_dropdown = gr.Dropdown(
                        choices=danish_models,
                        multiselect=True,
                        label="Models",
                        value=["gpt-4-0613", "mistralai/Mistral-7B-v0.1"],
                        interactive=True,
                        scale=2,
                    )
                with gr.Row():
                    use_win_ratio_checkbox = gr.Checkbox(
                        label="Compare models with win ratios (as opposed to raw scores)",
                        value=True,
                        interactive=True,
                        scale=1,
                    )
                    show_scale_checkbox = gr.Checkbox(
                        label="Show the scale on the plot (always 0-100)",
                        value=False,
                        interactive=True,
                        scale=1,
                    )
                    plot_width_slider = gr.Slider(
                        label="Plot width",
                        minimum=600,
                        maximum=1000,
                        step=10,
                        value=800,
                        interactive=True,
                        scale=1,
                    )
                    plot_height_slider = gr.Slider(
                        label="Plot height",
                        minimum=300,
                        maximum=700,
                        step=10,
                        value=500,
                        interactive=True,
                        scale=1,
                    )
                with gr.Row():
                    plot = gr.Plot(
                        value=produce_radial_plot(
                            model_ids_dropdown.value,
                            language_names=language_names_dropdown.value,
                            use_win_ratio=use_win_ratio_checkbox.value,
                            show_scale=show_scale_checkbox.value,
                            plot_width=plot_width_slider.value,
                            plot_height=plot_height_slider.value,
                            colour_mapping=colour_mapping,
                            results_dfs=results_dfs,
                        ),
                    )
        with gr.Tab(label="About"):
            gr.Markdown(ABOUT_MARKDOWN)

        gr.Markdown(
            "<center>Made with ❤️ by the <a href=\"https://alexandra.dk\">"
            "Alexandra Institute</a>.</center>"
        )

        language_names_dropdown.change(
            fn=partial(update_model_ids_dropdown, results_dfs=results_dfs),
            inputs=[language_names_dropdown, model_ids_dropdown],
            outputs=model_ids_dropdown,
        )

        # Update plot when anything changes
        update_plot_kwargs = dict(
            fn=partial(
                produce_radial_plot,
                colour_mapping=colour_mapping,
                results_dfs=results_dfs,
            ),
            inputs=[
                model_ids_dropdown,
                language_names_dropdown,
                use_win_ratio_checkbox,
                show_scale_checkbox,
                plot_width_slider,
                plot_height_slider,
            ],
            outputs=plot,
        )
        language_names_dropdown.change(**update_plot_kwargs)
        model_ids_dropdown.change(**update_plot_kwargs)
        use_win_ratio_checkbox.change(**update_plot_kwargs)
        show_scale_checkbox.change(**update_plot_kwargs)
        plot_width_slider.change(**update_plot_kwargs)
        plot_height_slider.change(**update_plot_kwargs)

    demo.launch()


def update_model_ids_dropdown(
    language_names: list[str],
    model_ids: list[str],
    results_dfs: dict[Language, pd.DataFrame] | None,
) -> dict:
    """When the language names are updated, update the model ids dropdown.

    Args:
        language_names:
            The names of the languages to include in the plot.
        model_ids:
            The ids of the models to include in the plot.
        results_dfs:
            The results dataframes for each language.

    Returns:
        The Gradio update to the model ids dropdown.
    """
    global last_fetch
    minutes_since_last_fetch = (dt.datetime.now() - last_fetch).total_seconds() / 60
    if minutes_since_last_fetch > UPDATE_FREQUENCY_MINUTES:
        results_dfs = fetch_results()
        last_fetch = dt.datetime.now()

    if results_dfs is None or len(language_names) == 0:
        if results_dfs is None:
            logger.info("No results fetched yet. Resetting model ids dropdown.")
        else:
            logger.info("No languages selected. Resetting model ids dropdown.")
        return gr.update(choices=[], value=[])

    tasks = [
        task
        for task in ALL_TASKS
        if all(
            task in df.columns
            for language, df in results_dfs.items()
            if language.name in language_names
        )
    ]

    filtered_results_dfs = {
        language: df[tasks]
        for language, df in results_dfs.items()
        if language.name in language_names
    }

    unique_models: set[str] = {
        str(model_id)
        for df in filtered_results_dfs.values()
        for model_id in df.index
    }

    filtered_models: list[str] = [
        model_id
        for model_id in unique_models
        if all(model_id in df.index for df in filtered_results_dfs.values())
    ]

    if len(filtered_models) == 0:
        logger.info(
            "No valid models for the selected languages. Resetting model ids dropdown."
        )
        return gr.update(choices=[], value=[])

    valid_selected_models: list[str] = [
        model_id for model_id in model_ids if model_id in filtered_models
    ]
    if not valid_selected_models:
        if len(filtered_models) > 1:
            valid_selected_models = random.sample(population=filtered_models, k=2)
        elif len(filtered_models) == 1:
            valid_selected_models = random.sample(population=filtered_models, k=1)

    logger.info(
        f"Updated model ids dropdown with {len(filtered_models):,} valid models for "
        f"the selected languages, with {valid_selected_models} selected."
    )

    return gr.update(choices=filtered_models, value=valid_selected_models)


def produce_radial_plot(
    model_ids: list[str],
    language_names: list[str],
    use_win_ratio: bool,
    show_scale: bool,
    plot_width: int,
    plot_height: int,
    colour_mapping: dict[str, tuple[int, int, int]],
    results_dfs: dict[Language, pd.DataFrame] | None,
) -> go.Figure:
    """Produce a radial plot as a plotly figure.

    Args:
        model_ids:
            The ids of the models to include in the plot.
        language_names:
            The names of the languages to include in the plot.
        use_win_ratio:
            Whether to use win ratios (as opposed to raw scores).
        show_scale:
            Whether to show the scale on the plot.
        plot_width:
            The width of the plot.
        plot_height:
            The height of the plot.
        colour_mapping:
            A mapping from model ids to RGB triplets.
        results_dfs:
            The results dataframes for each language.

    Returns:
        A plotly figure.
    """
    global last_fetch
    minutes_since_last_fetch = (dt.datetime.now() - last_fetch).total_seconds() / 60
    if minutes_since_last_fetch > UPDATE_FREQUENCY_MINUTES:
        results_dfs = fetch_results()
        last_fetch = dt.datetime.now()

    if results_dfs is None or len(language_names) == 0 or len(model_ids) == 0:
        if results_dfs is None:
            logger.info("No results fetched yet. Resetting plot.")
        elif len(language_names) == 0:
            logger.info("No languages selected. Resetting plot.")
        else:
            logger.info("No models selected. Resetting plot.")
        return go.Figure()

    logger.info(
        f"Producing radial plot for models {model_ids!r} on languages "
        f"{language_names!r}..."
    )

    languages = [ALL_LANGUAGES[language_name] for language_name in language_names]

    results_dfs_filtered = {
        language: df
        for language, df in results_dfs.items()
        if language.name in language_names
    }

    tasks = [
        task
        for task in ALL_TASKS
        if all(task in df.columns for df in results_dfs_filtered.values())
    ]

    # Add all the evaluation results for each model
    results: list[list[float]] = list()
    for model_id in model_ids:
        result_list = list()
        for task in tasks:
            win_ratios = list()
            scores = list()
            for language in languages:
                if model_id not in results_dfs_filtered[language].index:
                    continue
                score_list = results_dfs_filtered[language].loc[model_id][task]
                win_ratio = 100 * np.mean([
                    stats.ttest_rel(
                        a=score_list, b=other_scores, alternative="greater"
                    ).pvalue < 0.05
                    for other_scores in results_dfs_filtered[language][task].dropna().drop(index=model_id)
                ])
                win_ratios.append(win_ratio)

                if all(score < 1 for score in score_list):
                    score_list = [100 * score for score in score_list]

                scores.append(np.mean(score_list))
            if use_win_ratio:
                result_list.append(np.mean(win_ratios))
            else:
                result_list.append(np.mean(scores))
        results.append(result_list)

    # Get a matrix of shape [num_models, num_tasks], where entry (i, j) indicates how
    # many models that model i has beaten on task j
    result_matrix = np.array(results)
    num_models = result_matrix.shape[0]
    num_tasks = result_matrix.shape[1]
    num_models_beaten = np.zeros((num_models, num_tasks))
    for i in range(num_models):
        for j in range(num_tasks):
            num_models_beaten[i, j] = np.sum(
                result_matrix[i, j] > result_matrix[:, j]
            )

    # Sort the models (and their results) such that the model who beats most other
    # models first. This will result in the "smaller areas" being on top of the "larger
    # areas", which is more aesthetically pleasing.
    sorted_idxs = num_models_beaten.sum(axis=1).argsort()[::-1]
    model_ids = np.asarray(model_ids)[sorted_idxs].tolist()
    results = result_matrix[sorted_idxs].tolist()

    # Add the results to a plotly figure
    fig = go.Figure()
    for model_id, result_list in zip(model_ids, results):
        r, g, b = colour_mapping[model_id]
        fig.add_trace(go.Scatterpolar(
            r=result_list,
            theta=[task.name for task in tasks],
            name=model_id,
            fill='toself',
            fillcolor=f'rgba({r}, {g}, {b}, 0.6)',
            line=dict(color=f'rgb({r}, {g}, {b})'),
        ))

    languages_str = ""
    if len(languages) > 1:
        languages_str = ", ".join([language.name for language in languages[:-1]])
        languages_str += " and "
    languages_str += languages[-1].name

    if use_win_ratio:
        title = f'Win Ratio on on {languages_str} Language Tasks'
    else:
        title = f'LLM Score on on {languages_str} Language Tasks'

    # Builds the radial plot from the results
    fig.update_layout(
        polar=dict(radialaxis=dict(visible=show_scale, range=[0, 100])),
        showlegend=True,
        title=title,
        width=plot_width,
        height=plot_height,
    )

    logger.info("Successfully produced radial plot.")

    return fig

def fetch_results() -> dict[Language, pd.DataFrame]:
    """Fetch the results from the ScandEval benchmark.

    Returns:
        A dictionary of languages -> results-dataframes, whose indices are the
        models and columns are the tasks.
    """
    logger.info("Fetching results from ScandEval benchmark...")

    response = requests.get(
        "https://www.scandeval.com/scandeval_benchmark_results.jsonl"
    )
    response.raise_for_status()
    records = [
        json.loads(dct_str)
        for dct_str in response.text.split("\n")
        if dct_str.strip("\n")
    ]

    # Build a dictionary of languages -> results-dataframes, whose indices are the
    # models and columns are the tasks.
    results_dfs = dict()
    for language in {dataset.language for dataset in DATASETS}:
        possible_dataset_names = {
            dataset.name for dataset in DATASETS if dataset.language == language
        }
        data_dict = defaultdict(dict)
        for record in records:
            model_name = record["model"]
            dataset_name = record["dataset"]
            if dataset_name in possible_dataset_names:
                dataset = next(
                    dataset for dataset in DATASETS if dataset.name == dataset_name
                )
                scores = [
                    test_score_dict.get(
                        f"test_{dataset.task.metric}",
                        test_score_dict.get(dataset.task.metric)
                    )
                    for test_score_dict in record["results"]["raw"]["test"]
                ]
                if dataset.task in data_dict[model_name]:
                    data_dict[model_name][dataset.task].append(scores)
                else:
                    data_dict[model_name][dataset.task] = [scores]
        results_df = pd.DataFrame(data_dict).T.map(
            lambda lists_or_nan:
                list(it.chain(lists_or_nan))
                if lists_or_nan == lists_or_nan
                else lists_or_nan
        ).dropna().map(lambda lst: lst[0])
        results_dfs[language] = results_df

    logger.info("Successfully fetched results from ScandEval benchmark.")

    return results_dfs

if __name__ == "__main__":
    main()