File size: 26,972 Bytes
1ef58ee d05d9d8 3baf99a 9a46da5 3baf99a b1d592c 3baf99a 5d40291 79f114e 5d40291 79f114e 5d40291 3baf99a 81fc601 1ef58ee 81fc601 1ef58ee 3baf99a 1ef58ee 81fc601 1ef58ee d05d9d8 5d40291 81fc601 5d40291 1ef58ee 81fc601 1ef58ee bd0b666 1ef58ee a4a8904 81fc601 1ef58ee a4a8904 65f7993 1ef58ee a4a8904 65f7993 1ef58ee bd0b666 1ef58ee bd0b666 1ef58ee bd0b666 1ef58ee bd0b666 1ef58ee 9b382e3 d05d9d8 9b382e3 1ef58ee d05d9d8 4bf4abc d05d9d8 4bf4abc d05d9d8 1ef58ee bd0b666 1ef58ee 4bf4abc bd0b666 0360399 4bf4abc 0360399 4bf4abc bd0b666 7b43a09 bd0b666 1ef58ee a4a8904 65f7993 81fc601 3baf99a 1ef58ee a4a8904 65f7993 81fc601 1ef58ee 3baf99a bd0b666 3baf99a 1ef58ee 9b382e3 1ef58ee 8b5abf6 9a46da5 76e4363 9a46da5 1ef58ee 9a46da5 1ef58ee e5b38af 1ef58ee 81fc601 1ef58ee 81fc601 76e4363 1ef58ee a4a8904 76e4363 65f7993 1ef58ee 3baf99a 1ef58ee 3baf99a c6e4690 3baf99a 9a46da5 3baf99a 9a46da5 3baf99a 9a46da5 3baf99a 9a46da5 9b382e3 3baf99a 1ef58ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 |
"""Script to produce radial plots."""
from functools import partial
import plotly.graph_objects as go
import json
import numpy as np
from collections import defaultdict
import pandas as pd
from pydantic import BaseModel
import gradio as gr
import requests
import random
import logging
import datetime as dt
import scipy.stats as stats
import itertools as it
fmt = "%(asctime)s [%(levelname)s] <%(name)s> %(message)s"
logging.basicConfig(level=logging.INFO, format=fmt)
logger = logging.getLogger("radial_plot_generator")
INTRO_MARKDOWN = """
# Radial Plot Generator
This demo allows you to generate a radial plot comparing the performance of different
language models on different tasks. It is based on the generative results from the
[ScandEval benchmark](https://scandeval.com).
"""
ABOUT_MARKDOWN = """
## About the ScandEval Benchmark
The [ScandEval benchmark](https://scandeval.com) is used compare pretrained language
models on tasks in Danish, Swedish, Norwegian Bokmål, Norwegian Nynorsk, Icelandic,
Faroese, German, Dutch and English. The benchmark supports both encoder models (such as
BERT) and generative models (such as GPT), and leaderboards for both kinds [are
available](https://scandeval.com).
The generative models are evaluated using in-context learning with few-shot prompts.
The few-shot examples are sampled randomly from the training split, and we benchmark
the models 10 times with bootstrapped test sets and different few-shot examples in each
iteration. This allows us to better measure the uncertainty of the results. We use the
uncertainty in the radial plot when we compute the win ratios (i.e., the percentage of
other models that a model beats on a task). Namely, we compute the win ratio as the
percentage of other models that a model _significantly_ beats on a task, where we use a
paired t-test with a significance level of 0.05 to determine whether a model
significantly beats another model.
## The Benchmark Datasets
The ScandEval generative benchmark currently covers the languages Danish, Swedish,
Norwegian, Icelandic, German, Dutch and English. For each language, the benchmark
consists of 7 different tasks, each of which consists of 1-2 datasets. The tasks are
the following:
### Text Classification
Given a piece of text, classify it into a number of classes. For this task we extract
the first token of the possible labels, and choose the label whose first token has the
highest probability. All datasets in this category are currently trinary sentiment
classification datasets. We use the Matthews Correlation Coefficient (MCC) as the
evaluation metric.
### Information Extraction
Given a piece of text, extract a number of entities from the text. As the model needs
to extract multiple entities, we use [structured
generation](https://github.com/noamgat/lm-format-enforcer) to make the model generate a
JSON dictionary with keys being the entity categories and values being lists of the
identified entities. All datasets in this task are named entity recognition datasets.
We use the micro-averaged F1 score as the evaluation metric, where we ignore the
Miscellaneous category.
### Grammar
Given a piece of text, determine whether it is grammatically correct or not. All
datasets in this task are built from the dependency treebanks of the languages, where
words are removed or swapped, in a way that makes the sentence ungrammatical. We use
the Matthews Correlation Coefficient (MCC) as the evaluation metric.
### Question Answering
Given a question and a piece of text, extract the answer to the question from the text.
All datasets in this task are extractive question answering datasets. We use the exact
match (EM) score as the evaluation metric.
### Summarisation
Given a piece of text, generate a summary of the text. All the datasets come from
either news articles or WikiHow articles. We use the BERTScore metric as the evaluation
metric, where the encoder model used is
[microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base).
### Knowledge
Given a trivia-style question with multiple choice answers, choose the correct answer.
As with text classification, we use the probabilities of the answer letter (a, b, c or
d) to choose the answer. The datasets in this task are machine translated versions of
the [MMLU](https://doi.org/10.48550/arXiv.2009.03300) and
[ARC](https://allenai.org/data/arc) datasets. We use the Matthews Correlation
Coefficient (MCC) as the evaluation metric.
### Reasoning
Given a scenario and multiple possible endings, choose the correct ending. As with text
classification, we use the probabilities of the answer letter (a, b, c or d) to choose
the answer. The datasets in this task are machine translated versions of the
[HellaSwag](https://rowanzellers.com/hellaswag/) dataset. We use the Matthews
Correlation Coefficient (MCC) as the evaluation metric.
## Citation
If you use the ScandEval benchmark in your work, please cite [the
paper](https://aclanthology.org/2023.nodalida-1.20):
```
@inproceedings{nielsen2023scandeval,
title={ScandEval: A Benchmark for Scandinavian Natural Language Processing},
author={Nielsen, Dan},
booktitle={Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)},
pages={185--201},
year={2023}
}
```
"""
UPDATE_FREQUENCY_MINUTES = 30
MIN_COLOUR_DISTANCE_BETWEEN_MODELS = 200
class Task(BaseModel):
"""Class to hold task information."""
name: str
metric: str
def __hash__(self):
return hash(self.name)
class Language(BaseModel):
"""Class to hold language information."""
code: str
name: str
def __hash__(self):
return hash(self.code)
class Dataset(BaseModel):
"""Class to hold dataset information."""
name: str
language: Language
task: Task
def __hash__(self):
return hash(self.name)
TEXT_CLASSIFICATION = Task(name="text classification", metric="mcc")
INFORMATION_EXTRACTION = Task(name="information extraction", metric="micro_f1_no_misc")
GRAMMAR = Task(name="grammar", metric="mcc")
QUESTION_ANSWERING = Task(name="question answering", metric="em")
SUMMARISATION = Task(name="summarisation", metric="bertscore")
KNOWLEDGE = Task(name="knowledge", metric="mcc")
REASONING = Task(name="reasoning", metric="mcc")
ALL_TASKS = [obj for obj in globals().values() if isinstance(obj, Task)]
DANISH = Language(code="da", name="Danish")
NORWEGIAN = Language(code="no", name="Norwegian")
SWEDISH = Language(code="sv", name="Swedish")
ICELANDIC = Language(code="is", name="Icelandic")
GERMAN = Language(code="de", name="German")
DUTCH = Language(code="nl", name="Dutch")
ENGLISH = Language(code="en", name="English")
ALL_LANGUAGES = {
obj.name: obj for obj in globals().values() if isinstance(obj, Language)
}
DATASETS = [
Dataset(name="swerec", language=SWEDISH, task=TEXT_CLASSIFICATION),
Dataset(name="angry-tweets", language=DANISH, task=TEXT_CLASSIFICATION),
Dataset(name="norec", language=NORWEGIAN, task=TEXT_CLASSIFICATION),
Dataset(name="sb10k", language=GERMAN, task=TEXT_CLASSIFICATION),
Dataset(name="dutch-social", language=DUTCH, task=TEXT_CLASSIFICATION),
Dataset(name="sst5", language=ENGLISH, task=TEXT_CLASSIFICATION),
Dataset(name="suc3", language=SWEDISH, task=INFORMATION_EXTRACTION),
Dataset(name="dansk", language=DANISH, task=INFORMATION_EXTRACTION),
Dataset(name="norne-nb", language=NORWEGIAN, task=INFORMATION_EXTRACTION),
Dataset(name="norne-nn", language=NORWEGIAN, task=INFORMATION_EXTRACTION),
Dataset(name="mim-gold-ner", language=ICELANDIC, task=INFORMATION_EXTRACTION),
Dataset(name="germeval", language=GERMAN, task=INFORMATION_EXTRACTION),
Dataset(name="conll-nl", language=DUTCH, task=INFORMATION_EXTRACTION),
Dataset(name="conll-en", language=ENGLISH, task=INFORMATION_EXTRACTION),
Dataset(name="scala-sv", language=SWEDISH, task=GRAMMAR),
Dataset(name="scala-da", language=DANISH, task=GRAMMAR),
Dataset(name="scala-nb", language=NORWEGIAN, task=GRAMMAR),
Dataset(name="scala-nn", language=NORWEGIAN, task=GRAMMAR),
Dataset(name="scala-is", language=ICELANDIC, task=GRAMMAR),
Dataset(name="scala-de", language=GERMAN, task=GRAMMAR),
Dataset(name="scala-nl", language=DUTCH, task=GRAMMAR),
Dataset(name="scala-en", language=ENGLISH, task=GRAMMAR),
Dataset(name="scandiqa-da", language=DANISH, task=QUESTION_ANSWERING),
Dataset(name="norquad", language=NORWEGIAN, task=QUESTION_ANSWERING),
Dataset(name="scandiqa-sv", language=SWEDISH, task=QUESTION_ANSWERING),
Dataset(name="nqii", language=ICELANDIC, task=QUESTION_ANSWERING),
Dataset(name="germanquad", language=GERMAN, task=QUESTION_ANSWERING),
Dataset(name="squad", language=ENGLISH, task=QUESTION_ANSWERING),
Dataset(name="squad-nl", language=DUTCH, task=QUESTION_ANSWERING),
Dataset(name="nordjylland-news", language=DANISH, task=SUMMARISATION),
Dataset(name="mlsum", language=GERMAN, task=SUMMARISATION),
Dataset(name="rrn", language=ICELANDIC, task=SUMMARISATION),
Dataset(name="no-sammendrag", language=NORWEGIAN, task=SUMMARISATION),
Dataset(name="wiki-lingua-nl", language=DUTCH, task=SUMMARISATION),
Dataset(name="swedn", language=SWEDISH, task=SUMMARISATION),
Dataset(name="cnn-dailymail", language=ENGLISH, task=SUMMARISATION),
Dataset(name="mmlu-da", language=DANISH, task=KNOWLEDGE),
Dataset(name="mmlu-no", language=NORWEGIAN, task=KNOWLEDGE),
Dataset(name="mmlu-sv", language=SWEDISH, task=KNOWLEDGE),
Dataset(name="mmlu-is", language=ICELANDIC, task=KNOWLEDGE),
Dataset(name="mmlu-de", language=GERMAN, task=KNOWLEDGE),
Dataset(name="mmlu-nl", language=DUTCH, task=KNOWLEDGE),
Dataset(name="mmlu", language=ENGLISH, task=KNOWLEDGE),
Dataset(name="arc-da", language=DANISH, task=KNOWLEDGE),
Dataset(name="arc-no", language=NORWEGIAN, task=KNOWLEDGE),
Dataset(name="arc-sv", language=SWEDISH, task=KNOWLEDGE),
Dataset(name="arc-is", language=ICELANDIC, task=KNOWLEDGE),
Dataset(name="arc-de", language=GERMAN, task=KNOWLEDGE),
Dataset(name="arc-nl", language=DUTCH, task=KNOWLEDGE),
Dataset(name="arc", language=ENGLISH, task=KNOWLEDGE),
Dataset(name="hellaswag-da", language=DANISH, task=REASONING),
Dataset(name="hellaswag-no", language=NORWEGIAN, task=REASONING),
Dataset(name="hellaswag-sv", language=SWEDISH, task=REASONING),
Dataset(name="hellaswag-is", language=ICELANDIC, task=REASONING),
Dataset(name="hellaswag-de", language=GERMAN, task=REASONING),
Dataset(name="hellaswag-nl", language=DUTCH, task=REASONING),
Dataset(name="hellaswag", language=ENGLISH, task=REASONING),
]
def main() -> None:
"""Produce a radial plot."""
global last_fetch
results_dfs = fetch_results()
last_fetch = dt.datetime.now()
all_languages = [language.name for language in ALL_LANGUAGES.values()]
danish_models = list({model_id for model_id in results_dfs[DANISH].index})
# Get distinct RGB values for all models
all_models = list(
{model_id for df in results_dfs.values() for model_id in df.index}
)
colour_mapping: dict[str, tuple[int, int, int]] = dict()
for i in it.count():
min_colour_distance = MIN_COLOUR_DISTANCE_BETWEEN_MODELS - i
if i > 0:
logger.info(
f"All retries failed. Trying again with min colour distance "
f"{min_colour_distance}."
)
random.seed(4242 + i)
retries_left = 10 * len(all_models)
for model_id in all_models:
r, g, b = 0, 0, 0
too_bright, similar_to_other_model = True, True
while (too_bright or similar_to_other_model) and retries_left > 0:
r, g, b = tuple(random.randint(0, 255) for _ in range(3))
too_bright = np.min([r, g, b]) > 200
similar_to_other_model = any(
np.abs(
np.array(colour) - np.array([r, g, b])
).sum() < min_colour_distance
for colour in colour_mapping.values()
)
retries_left -= 1
logger.info(f"Retries left to find a colour mapping: {retries_left}")
colour_mapping[model_id] = (r, g, b)
if retries_left:
logger.info(
f"Successfully found a colour mapping with min colour distance "
f"{min_colour_distance}."
)
break
with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
gr.Markdown(INTRO_MARKDOWN)
with gr.Tab(label="Build a Radial Plot"):
with gr.Column():
with gr.Row():
language_names_dropdown = gr.Dropdown(
choices=all_languages,
multiselect=True,
label="Languages",
value=["Danish"],
interactive=True,
scale=2,
)
model_ids_dropdown = gr.Dropdown(
choices=danish_models,
multiselect=True,
label="Models",
value=["gpt-4-0613", "mistralai/Mistral-7B-v0.1"],
interactive=True,
scale=2,
)
with gr.Row():
use_win_ratio_checkbox = gr.Checkbox(
label="Compare models with win ratios (as opposed to raw scores)",
value=True,
interactive=True,
scale=1,
)
show_scale_checkbox = gr.Checkbox(
label="Show the scale on the plot (always 0-100)",
value=False,
interactive=True,
scale=1,
)
plot_width_slider = gr.Slider(
label="Plot width",
minimum=600,
maximum=1000,
step=10,
value=800,
interactive=True,
scale=1,
)
plot_height_slider = gr.Slider(
label="Plot height",
minimum=300,
maximum=700,
step=10,
value=500,
interactive=True,
scale=1,
)
with gr.Row():
plot = gr.Plot(
value=produce_radial_plot(
model_ids_dropdown.value,
language_names=language_names_dropdown.value,
use_win_ratio=use_win_ratio_checkbox.value,
show_scale=show_scale_checkbox.value,
plot_width=plot_width_slider.value,
plot_height=plot_height_slider.value,
colour_mapping=colour_mapping,
results_dfs=results_dfs,
),
)
with gr.Tab(label="About"):
gr.Markdown(ABOUT_MARKDOWN)
gr.Markdown(
"<center>Made with ❤️ by the <a href=\"https://alexandra.dk\">"
"Alexandra Institute</a>.</center>"
)
language_names_dropdown.change(
fn=partial(update_model_ids_dropdown, results_dfs=results_dfs),
inputs=[language_names_dropdown, model_ids_dropdown],
outputs=model_ids_dropdown,
)
# Update plot when anything changes
update_plot_kwargs = dict(
fn=partial(
produce_radial_plot,
colour_mapping=colour_mapping,
results_dfs=results_dfs,
),
inputs=[
model_ids_dropdown,
language_names_dropdown,
use_win_ratio_checkbox,
show_scale_checkbox,
plot_width_slider,
plot_height_slider,
],
outputs=plot,
)
language_names_dropdown.change(**update_plot_kwargs)
model_ids_dropdown.change(**update_plot_kwargs)
use_win_ratio_checkbox.change(**update_plot_kwargs)
show_scale_checkbox.change(**update_plot_kwargs)
plot_width_slider.change(**update_plot_kwargs)
plot_height_slider.change(**update_plot_kwargs)
demo.launch()
def update_model_ids_dropdown(
language_names: list[str],
model_ids: list[str],
results_dfs: dict[Language, pd.DataFrame] | None,
) -> dict:
"""When the language names are updated, update the model ids dropdown.
Args:
language_names:
The names of the languages to include in the plot.
model_ids:
The ids of the models to include in the plot.
results_dfs:
The results dataframes for each language.
Returns:
The Gradio update to the model ids dropdown.
"""
global last_fetch
minutes_since_last_fetch = (dt.datetime.now() - last_fetch).total_seconds() / 60
if minutes_since_last_fetch > UPDATE_FREQUENCY_MINUTES:
results_dfs = fetch_results()
last_fetch = dt.datetime.now()
if results_dfs is None or len(language_names) == 0:
if results_dfs is None:
logger.info("No results fetched yet. Resetting model ids dropdown.")
else:
logger.info("No languages selected. Resetting model ids dropdown.")
return gr.update(choices=[], value=[])
tasks = [
task
for task in ALL_TASKS
if all(
task in df.columns
for language, df in results_dfs.items()
if language.name in language_names
)
]
filtered_results_dfs = {
language: df[tasks]
for language, df in results_dfs.items()
if language.name in language_names
}
unique_models: set[str] = {
str(model_id)
for df in filtered_results_dfs.values()
for model_id in df.index
}
filtered_models: list[str] = [
model_id
for model_id in unique_models
if all(model_id in df.index for df in filtered_results_dfs.values())
]
if len(filtered_models) == 0:
logger.info(
"No valid models for the selected languages. Resetting model ids dropdown."
)
return gr.update(choices=[], value=[])
valid_selected_models: list[str] = [
model_id for model_id in model_ids if model_id in filtered_models
]
if not valid_selected_models:
if len(filtered_models) > 1:
valid_selected_models = random.sample(population=filtered_models, k=2)
elif len(filtered_models) == 1:
valid_selected_models = random.sample(population=filtered_models, k=1)
logger.info(
f"Updated model ids dropdown with {len(filtered_models):,} valid models for "
f"the selected languages, with {valid_selected_models} selected."
)
return gr.update(choices=filtered_models, value=valid_selected_models)
def produce_radial_plot(
model_ids: list[str],
language_names: list[str],
use_win_ratio: bool,
show_scale: bool,
plot_width: int,
plot_height: int,
colour_mapping: dict[str, tuple[int, int, int]],
results_dfs: dict[Language, pd.DataFrame] | None,
) -> go.Figure:
"""Produce a radial plot as a plotly figure.
Args:
model_ids:
The ids of the models to include in the plot.
language_names:
The names of the languages to include in the plot.
use_win_ratio:
Whether to use win ratios (as opposed to raw scores).
show_scale:
Whether to show the scale on the plot.
plot_width:
The width of the plot.
plot_height:
The height of the plot.
colour_mapping:
A mapping from model ids to RGB triplets.
results_dfs:
The results dataframes for each language.
Returns:
A plotly figure.
"""
global last_fetch
minutes_since_last_fetch = (dt.datetime.now() - last_fetch).total_seconds() / 60
if minutes_since_last_fetch > UPDATE_FREQUENCY_MINUTES:
results_dfs = fetch_results()
last_fetch = dt.datetime.now()
if results_dfs is None or len(language_names) == 0 or len(model_ids) == 0:
if results_dfs is None:
logger.info("No results fetched yet. Resetting plot.")
elif len(language_names) == 0:
logger.info("No languages selected. Resetting plot.")
else:
logger.info("No models selected. Resetting plot.")
return go.Figure()
logger.info(
f"Producing radial plot for models {model_ids!r} on languages "
f"{language_names!r}..."
)
languages = [ALL_LANGUAGES[language_name] for language_name in language_names]
results_dfs_filtered = {
language: df
for language, df in results_dfs.items()
if language.name in language_names
}
tasks = [
task
for task in ALL_TASKS
if all(task in df.columns for df in results_dfs_filtered.values())
]
# Add all the evaluation results for each model
results: list[list[float]] = list()
for model_id in model_ids:
result_list = list()
for task in tasks:
win_ratios = list()
scores = list()
for language in languages:
if model_id not in results_dfs_filtered[language].index:
continue
score_list = results_dfs_filtered[language].loc[model_id][task]
win_ratio = 100 * np.mean([
stats.ttest_rel(
a=score_list, b=other_scores, alternative="greater"
).pvalue < 0.05
for other_scores in results_dfs_filtered[language][task].dropna().drop(index=model_id)
])
win_ratios.append(win_ratio)
if all(score < 1 for score in score_list):
score_list = [100 * score for score in score_list]
scores.append(np.mean(score_list))
if use_win_ratio:
result_list.append(np.mean(win_ratios))
else:
result_list.append(np.mean(scores))
results.append(result_list)
# Get a matrix of shape [num_models, num_tasks], where entry (i, j) indicates how
# many models that model i has beaten on task j
result_matrix = np.array(results)
num_models = result_matrix.shape[0]
num_tasks = result_matrix.shape[1]
num_models_beaten = np.zeros((num_models, num_tasks))
for i in range(num_models):
for j in range(num_tasks):
num_models_beaten[i, j] = np.sum(
result_matrix[i, j] > result_matrix[:, j]
)
# Sort the models (and their results) such that the model who beats most other
# models first. This will result in the "smaller areas" being on top of the "larger
# areas", which is more aesthetically pleasing.
sorted_idxs = num_models_beaten.sum(axis=1).argsort()[::-1]
model_ids = np.asarray(model_ids)[sorted_idxs].tolist()
results = result_matrix[sorted_idxs].tolist()
# Add the results to a plotly figure
fig = go.Figure()
for model_id, result_list in zip(model_ids, results):
r, g, b = colour_mapping[model_id]
fig.add_trace(go.Scatterpolar(
r=result_list,
theta=[task.name for task in tasks],
name=model_id,
fill='toself',
fillcolor=f'rgba({r}, {g}, {b}, 0.6)',
line=dict(color=f'rgb({r}, {g}, {b})'),
))
languages_str = ""
if len(languages) > 1:
languages_str = ", ".join([language.name for language in languages[:-1]])
languages_str += " and "
languages_str += languages[-1].name
if use_win_ratio:
title = f'Win Ratio on on {languages_str} Language Tasks'
else:
title = f'LLM Score on on {languages_str} Language Tasks'
# Builds the radial plot from the results
fig.update_layout(
polar=dict(radialaxis=dict(visible=show_scale, range=[0, 100])),
showlegend=True,
title=title,
width=plot_width,
height=plot_height,
)
logger.info("Successfully produced radial plot.")
return fig
def fetch_results() -> dict[Language, pd.DataFrame]:
"""Fetch the results from the ScandEval benchmark.
Returns:
A dictionary of languages -> results-dataframes, whose indices are the
models and columns are the tasks.
"""
logger.info("Fetching results from ScandEval benchmark...")
response = requests.get(
"https://www.scandeval.com/scandeval_benchmark_results.jsonl"
)
response.raise_for_status()
records = [
json.loads(dct_str)
for dct_str in response.text.split("\n")
if dct_str.strip("\n")
]
# Build a dictionary of languages -> results-dataframes, whose indices are the
# models and columns are the tasks.
results_dfs = dict()
for language in {dataset.language for dataset in DATASETS}:
possible_dataset_names = {
dataset.name for dataset in DATASETS if dataset.language == language
}
data_dict = defaultdict(dict)
for record in records:
model_name = record["model"]
dataset_name = record["dataset"]
if dataset_name in possible_dataset_names:
dataset = next(
dataset for dataset in DATASETS if dataset.name == dataset_name
)
scores = [
test_score_dict.get(
f"test_{dataset.task.metric}",
test_score_dict.get(dataset.task.metric)
)
for test_score_dict in record["results"]["raw"]["test"]
]
if dataset.task in data_dict[model_name]:
data_dict[model_name][dataset.task].append(scores)
else:
data_dict[model_name][dataset.task] = [scores]
results_df = pd.DataFrame(data_dict).T.map(
lambda lists_or_nan:
list(it.chain(lists_or_nan))
if lists_or_nan == lists_or_nan
else lists_or_nan
).dropna().map(lambda lst: lst[0])
results_dfs[language] = results_df
logger.info("Successfully fetched results from ScandEval benchmark.")
return results_dfs
if __name__ == "__main__":
main()
|