Spaces:
Runtime error
Runtime error
File size: 9,541 Bytes
7857c2b 5ffcbc5 7857c2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import numpy as np
import pandas as pd
import language_tool_python
import readability
import enchant
from enchant.checker import SpellChecker
from collections import OrderedDict
import nltk
nltk.download('punkt')
from nltk.tokenize import word_tokenize
class FeatureGenerator:
def __init__(self):
self.spell_checker = SpellChecker('en_US')
self.enchant_dict = enchant.Dict("en_US")
common_words_1k_filename = './1-1000.txt'
with open(common_words_1k_filename) as f:
self.common_words_1k = set(x.strip() for x in f.readlines())
common_words_filename_10k = './google-10000-english-no-swears.txt'
with open(common_words_filename_10k) as f:
self.common_words_10k = set(x.strip() for x in f.readlines())
# make sure common_words are a subset as well
self.common_words_10k.update(self.common_words_1k)
profanity_filename = './profanity.txt'
with open(profanity_filename) as f:
self.profanity_set = set(x.strip() for x in f.readlines())
words_freq_filename = "./count_1w.txt"
self.words_freq = pd.read_csv(words_freq_filename,
names=['word', 'freq'],
sep='\t',
header=None,
dtype={'word': str, 'freq': int},
keep_default_na=False,
na_values=[''])
self.words_freq = self.words_freq.set_index('word')
self.language_tool = language_tool_python.LanguageTool('en-US')
def text_preprocess(self, text: str):
'''
Transform text to be processed by readability
:param text: input text
:return: str preprocessed text
'''
text = text.strip()
# new paragraph starts with \n\n
# readability also requires each sentence to end with \n
paragraphs = [p.strip()\
.replace('. ', '.\n')\
.replace('? ', '?\n')\
.replace('! ', '!\n') for p in text.split('\n\n')]
return "\n\n".join(paragraphs)
def misspelled_count(self, text: str):
'''
Get count out misspelled words by enchant SpellChecker
:param text: input text
:return: count of misspelled words in text
'''
self.spell_checker.set_text(text)
return len(list(self.spell_checker))
def flatten_readability(self, r: OrderedDict):
'''
Flatten readability output by adding prefixes
:param r: OrderedDict of readability output
:return: dict
'''
out = {}
for k, group in r.items():
prefix = {'readability grades': '',
'sentence info': '',
'word usage': 'wu_',
'sentence beginnings': 'sb_'}[k]
for var_name, value in group.items():
out[prefix + var_name] = value
return out
def get_noncommon_words_count(self, text, common_words_dict):
# first, tokenize the text
# second, iterate over tokens and see whether
# a. it is a word
# b. not in common_words
# c. correctly spelled
# d. does not have underscore '_'
def is_noncommon_word(w):
return len(w) > 2 and\
w not in common_words_dict and\
'_' not in w and\
self.enchant_dict.check(w)
return sum(is_noncommon_word(x) for x in word_tokenize(text.lower()))
def get_noncommon_words_count_1k(self, text):
return self.get_noncommon_words_count(text, self.common_words_1k)
def get_noncommon_words_count_10k(self, text):
return self.get_noncommon_words_count(text, self.common_words_10k)
def get_profanity_count(self, text):
return sum(x in self.profanity_set for x in word_tokenize(text.lower()))
def get_uncommon_words_counts(self, text):
word_freq_thresholds = np.array([1e8, 1e7, 1e6, 1e5], dtype=int)
counts = np.zeros(len(word_freq_thresholds), dtype=int)
for w in word_tokenize(text):
if len(w) < 3 or '_' in w or not self.enchant_dict.check(w) or w not in self.words_freq.index:
continue
w_freq = self.words_freq.loc[w].values[0]
counts += (word_freq_thresholds > w_freq)
return counts
# I have commented out categories giving 0 columns in train dataset
# SEMANTICS is mostly 0, we drop it as well
LT_categories = ['CASING',
#'COLLOQUIALISMS',
'COMPOUNDING',
'CONFUSED_WORDS',
#'FALSE_FRIENDS',
#'GENDER_NEUTRALITY',
'GRAMMAR',
'MISC',
'PUNCTUATION',
'REDUNDANCY',
#'REGIONALISMS',
#'REPETITIONS',
#'REPETITIONS_STYLE',
#'SEMANTICS',
'STYLE',
'TYPOGRAPHY',
'TYPOS',
'TOTAL',
]
def get_LT_features(self, text):
'''
Generates LanguateTool features: each category count and a total number
'''
matches = self.language_tool.check(text)
cat_counts = [sum(m.category == cat for m in matches) for cat in self.LT_categories[:-1]]
return cat_counts + [len(matches)]
def generate_features(self, df: pd.DataFrame):
'''
Generate features from a dataframe with `full_text` column containing english text
:param df: input dataframe
:return: pd.DataFrame with features and possibly updated `full_text` column
'''
res_df = df.copy()
#res_df['full_text'] = res_df['full_text'].apply(self.text_preprocess)
features_df = res_df[['full_text']].apply(lambda row:
self.flatten_readability(
readability.getmeasures(
self.text_preprocess(row[0]), lang='en')),
axis='columns',
result_type='expand')
features_df['text_len'] = res_df['full_text'].apply(lambda x: len(x))
features_df['misspelled'] = res_df['full_text'].apply(self.misspelled_count)
features_df['noncommon_words_1k'] = res_df['full_text'].apply(self.get_noncommon_words_count_1k)
features_df['noncommon_words_10k'] = res_df['full_text'].apply(self.get_noncommon_words_count_10k)
features_df['profanity_count'] = res_df['full_text'].apply(self.get_profanity_count)
features_df[['uwc1e8', 'uwc1e7', 'uwc1e6', 'uwc1e5']] =\
res_df[['full_text']].apply(lambda x: self.get_uncommon_words_counts(x[0]),
axis='columns',
result_type='expand')
# Generate ratio features
words_ratio_features = ['wordtypes',
'long_words',
'complex_words',
'complex_words_dc',
'wu_tobeverb',
'wu_auxverb',
'wu_conjunction',
'wu_pronoun',
'wu_preposition',
'wu_nominalization',
'misspelled',
'noncommon_words_1k',
'noncommon_words_10k',
'uwc1e8',
'uwc1e7',
'uwc1e6',
'uwc1e5',
]
features_df[[x + "_ratio" for x in words_ratio_features]] = features_df[words_ratio_features]\
.div(features_df['words'], axis=0)
sentences_ratio_features = ['sb_pronoun',
'sb_interrogative',
'sb_article',
'sb_subordination',
'sb_conjunction',
'sb_preposition',
]
features_df[[x + "_ratio" for x in sentences_ratio_features]] = features_df[sentences_ratio_features]\
.div(features_df['sentences'], axis=0)
features_df[['LT_' + x for x in self.LT_categories]] = res_df[['full_text']]\
.apply(lambda x: self.get_LT_features(x[0]),
axis=1,
result_type='expand')
features_df[['LT_' + x + '_ratio' for x in self.LT_categories]] = features_df[['LT_' + x for x in self.LT_categories]]\
.div(features_df['words'], axis=0)
features_df = features_df.sort_index(axis=1)
return pd.concat([res_df, features_df], axis='columns')
|