File size: 11,722 Bytes
8959fb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acbbf71
 
 
 
8959fb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acbbf71
 
8959fb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db609a2
8959fb9
 
db609a2
 
8959fb9
 
 
 
 
 
 
 
 
 
 
 
 
 
acbbf71
8959fb9
 
 
 
 
 
 
db609a2
8959fb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acbbf71
 
 
 
 
 
8959fb9
acbbf71
8959fb9
 
acbbf71
 
8959fb9
acbbf71
 
8959fb9
acbbf71
 
8959fb9
acbbf71
 
 
8959fb9
 
 
 
 
 
 
 
acbbf71
8959fb9
 
 
 
 
 
 
acbbf71
 
8959fb9
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import argparse
import logging
import os
import re
from typing import Callable
import cv2
import gradio as gr
import nh3
import numpy as np
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, BitsAndBytesConfig, CLIPImageProcessor

from . import constants, session_logger, utils
from model.LISA import LISAForCausalLM
from model.llava import conversation as conversation_lib
from model.llava.mm_utils import tokenizer_image_token
from model.segment_anything.utils.transforms import ResizeLongestSide

placeholders = utils.create_placeholder_variables()


@session_logger.set_uuid_logging
def parse_args(args_to_parse):
    parser = argparse.ArgumentParser(description="LISA chat")
    parser.add_argument("--version", default="xinlai/LISA-13B-llama2-v1-explanatory")
    parser.add_argument("--vis_save_path", default="./vis_output", type=str)
    parser.add_argument(
        "--precision",
        default="fp16",
        type=str,
        choices=["fp32", "bf16", "fp16"],
        help="precision for inference",
    )
    parser.add_argument("--image_size", default=1024, type=int, help="image size")
    parser.add_argument("--model_max_length", default=512, type=int)
    parser.add_argument("--lora_r", default=8, type=int)
    parser.add_argument(
        "--vision-tower", default="openai/clip-vit-large-patch14", type=str
    )
    parser.add_argument("--local-rank", default=0, type=int, help="node rank")
    parser.add_argument("--load_in_8bit", action="store_true", default=False)
    parser.add_argument("--load_in_4bit", action="store_true", default=True)
    parser.add_argument("--use_mm_start_end", action="store_true", default=True)
    parser.add_argument(
        "--conv_type",
        default="llava_v1",
        type=str,
        choices=["llava_v1", "llava_llama_2"],
    )
    return parser.parse_args(args_to_parse)


@session_logger.set_uuid_logging
def get_cleaned_input(input_str):
    logging.info(f"start cleaning of input_str: {input_str}.")
    input_str = nh3.clean(
        input_str,
        tags={
            "a",
            "abbr",
            "acronym",
            "b",
            "blockquote",
            "code",
            "em",
            "i",
            "li",
            "ol",
            "strong",
            "ul",
        },
        attributes={
            "a": {"href", "title"},
            "abbr": {"title"},
            "acronym": {"title"},
        },
        url_schemes={"http", "https", "mailto"},
        link_rel=None,
    )
    logging.info(f"cleaned input_str: {input_str}.")
    return input_str


@session_logger.set_uuid_logging
def set_image_precision_by_args(input_image, precision):
    if precision == "bf16":
        input_image = input_image.bfloat16()
    elif precision == "fp16":
        input_image = input_image.half()
    else:
        input_image = input_image.float()
    return input_image


@session_logger.set_uuid_logging
def preprocess(
        x,
        pixel_mean=torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1),
        pixel_std=torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1),
        img_size=1024,
) -> torch.Tensor:
    """Normalize pixel values and pad to a square input."""
    logging.info("preprocess started")
    # Normalize colors
    x = (x - pixel_mean) / pixel_std
    # Pad
    h, w = x.shape[-2:]
    padh = img_size - h
    padw = img_size - w
    x = F.pad(x, (0, padw, 0, padh))
    logging.info("preprocess ended")
    return x


@session_logger.set_uuid_logging
def get_model(args_to_parse):
    logging.info("starting model preparation...")
    os.makedirs(args_to_parse.vis_save_path, exist_ok=True)

    # global tokenizer, tokenizer
    # Create model
    _tokenizer = AutoTokenizer.from_pretrained(
        args_to_parse.version,
        cache_dir=None,
        model_max_length=args_to_parse.model_max_length,
        padding_side="right",
        use_fast=False,
    )
    _tokenizer.pad_token = _tokenizer.unk_token
    args_to_parse.seg_token_idx = _tokenizer("[SEG]", add_special_tokens=False).input_ids[0]
    torch_dtype = torch.float32
    if args_to_parse.precision == "bf16":
        torch_dtype = torch.bfloat16
    elif args_to_parse.precision == "fp16":
        torch_dtype = torch.half
    kwargs = {"torch_dtype": torch_dtype}
    if args_to_parse.load_in_4bit:
        kwargs.update(
            {
                "torch_dtype": torch.half,
                "load_in_4bit": True,
                "quantization_config": BitsAndBytesConfig(
                    load_in_4bit=True,
                    bnb_4bit_compute_dtype=torch.float16,
                    bnb_4bit_use_double_quant=True,
                    bnb_4bit_quant_type="nf4",
                    llm_int8_skip_modules=["visual_model"],
                ),
            }
        )
    elif args_to_parse.load_in_8bit:
        kwargs.update(
            {
                "torch_dtype": torch.half,
                "quantization_config": BitsAndBytesConfig(
                    llm_int8_skip_modules=["visual_model"],
                    load_in_8bit=True,
                ),
            }
        )
    _model = LISAForCausalLM.from_pretrained(
        args_to_parse.version, low_cpu_mem_usage=True, vision_tower=args_to_parse.vision_tower,
        seg_token_idx=args_to_parse.seg_token_idx, **kwargs
    )
    _model.config.eos_token_id = _tokenizer.eos_token_id
    _model.config.bos_token_id = _tokenizer.bos_token_id
    _model.config.pad_token_id = _tokenizer.pad_token_id
    _model.get_model().initialize_vision_modules(_model.get_model().config)
    vision_tower = _model.get_model().get_vision_tower()
    vision_tower.to(dtype=torch_dtype)
    if args_to_parse.precision == "bf16":
        _model = _model.bfloat16().cuda()
    elif (
            args_to_parse.precision == "fp16" and (not args_to_parse.load_in_4bit) and (not args_to_parse.load_in_8bit)
    ):
        vision_tower = _model.get_model().get_vision_tower()
        _model.model.vision_tower = None
        import deepspeed

        model_engine = deepspeed.init_inference(
            model=_model,
            dtype=torch.half,
            replace_with_kernel_inject=True,
            replace_method="auto",
        )
        _model = model_engine.module
        _model.model.vision_tower = vision_tower.half().cuda()
    elif args_to_parse.precision == "fp32":
        _model = _model.float().cuda()
    vision_tower = _model.get_model().get_vision_tower()
    vision_tower.to(device=args_to_parse.local_rank)
    _clip_image_processor = CLIPImageProcessor.from_pretrained(_model.config.vision_tower)
    _transform = ResizeLongestSide(args_to_parse.image_size)
    _model.eval()
    logging.info("model preparation ok!")
    return _model, _clip_image_processor, _tokenizer, _transform


@session_logger.set_uuid_logging
def get_inference_model_by_args(args_to_parse):
    logging.info(f"args_to_parse:{args_to_parse}, creating model...")
    model, clip_image_processor, tokenizer, transform = get_model(args_to_parse)
    logging.info("created model, preparing inference function")
    no_seg_out, error_happened = placeholders["no_seg_out"], placeholders["error_happened"]

    @session_logger.set_uuid_logging
    def inference(input_str, input_image_pathname):
        ## filter out special chars
        input_str = get_cleaned_input(input_str)
        logging.info(f"input_str type: {type(input_str)}, input_image type: {type(input_image_pathname)}.")
        logging.info(f"input_str: {input_str}, input_image: {type(input_image_pathname)}.")

        ## input valid check
        if not re.match(r"^[A-Za-z ,.!?\'\"]+$", input_str) or len(input_str) < 1:
            output_str = "[Error] Invalid input: ", input_str
            return error_happened, output_str

        # Model Inference
        conv = conversation_lib.conv_templates[args_to_parse.conv_type].copy()
        conv.messages = []

        prompt = input_str
        prompt = utils.DEFAULT_IMAGE_TOKEN + "\n" + prompt
        if args_to_parse.use_mm_start_end:
            replace_token = (
                    utils.DEFAULT_IM_START_TOKEN + utils.DEFAULT_IMAGE_TOKEN + utils.DEFAULT_IM_END_TOKEN
            )
            prompt = prompt.replace(utils.DEFAULT_IMAGE_TOKEN, replace_token)

        conv.append_message(conv.roles[0], prompt)
        conv.append_message(conv.roles[1], "")
        prompt = conv.get_prompt()

        image_np = cv2.imread(input_image_pathname)
        image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
        original_size_list = [image_np.shape[:2]]

        image_clip = (
            clip_image_processor.preprocess(image_np, return_tensors="pt")[
                "pixel_values"
            ][0]
            .unsqueeze(0)
            .cuda()
        )
        logging.info(f"image_clip type: {type(image_clip)}.")
        image_clip = set_image_precision_by_args(image_clip, args_to_parse.precision)

        image = transform.apply_image(image_np)
        resize_list = [image.shape[:2]]

        image = (
            preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous())
            .unsqueeze(0)
            .cuda()
        )
        logging.info(f"image_clip type: {type(image_clip)}.")
        image = set_image_precision_by_args(image, args_to_parse.precision)

        input_ids = tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
        input_ids = input_ids.unsqueeze(0).cuda()

        output_ids, pred_masks = model.evaluate(
            image_clip,
            image,
            input_ids,
            resize_list,
            original_size_list,
            max_new_tokens=512,
            tokenizer=tokenizer,
        )
        output_ids = output_ids[0][output_ids[0] != utils.IMAGE_TOKEN_INDEX]

        text_output = tokenizer.decode(output_ids, skip_special_tokens=False)
        text_output = text_output.replace("\n", "").replace("  ", " ")
        text_output = text_output.split("ASSISTANT: ")[-1]

        logging.info(
            f"found n {len(pred_masks)} prediction masks, "
            f"text_output type: {type(text_output)}, text_output: {text_output}."
        )
        output_image = no_seg_out
        output_mask = no_seg_out
        for i, pred_mask in enumerate(pred_masks):
            if pred_mask.shape[0] == 0 or pred_mask.shape[1] == 0:
                continue
            pred_mask = pred_mask.detach().cpu().numpy()[0]
            pred_mask_bool = pred_mask > 0
            output_mask = pred_mask_bool.astype(np.uint8) * 255

            output_image = image_np.copy()
            output_image[pred_mask_bool] = (
                image_np * 0.5
                + pred_mask_bool[:, :, None].astype(np.uint8) * np.array([255, 0, 0]) * 0.5
            )[pred_mask_bool]

        output_str = f"ASSISTANT: {text_output} ..."
        logging.info(f"output_image type: {type(output_mask)}.")
        return output_image, output_mask, output_str

    logging.info("prepared inference function!")
    return inference


@session_logger.set_uuid_logging
def get_gradio_interface(
        fn_inference: Callable
):
    return gr.Interface(
        fn_inference,
        inputs=[
            gr.Textbox(lines=1, placeholder=None, label="Text Instruction"),
            gr.Image(type="filepath", label="Input Image")
        ],
        outputs=[
            gr.Image(type="pil", label="segmentation Output"),
            gr.Image(type="pil", label="mask Output"),
            gr.Textbox(lines=1, placeholder=None, label="Text Output")
        ],
        title=constants.title,
        description=constants.description,
        article=constants.article,
        examples=constants.examples,
        allow_flagging="auto"
    )