File size: 6,794 Bytes
74a35d9
28d0c5f
 
5abbb8c
28d0c5f
74a35d9
28d0c5f
 
74a35d9
28d0c5f
 
74a35d9
 
 
28d0c5f
e8a1983
 
 
 
28d0c5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fdcb38
28d0c5f
 
 
 
 
5abbb8c
 
 
 
 
 
28d0c5f
 
5abbb8c
28d0c5f
 
5abbb8c
 
 
28d0c5f
 
74a35d9
5abbb8c
28d0c5f
0b0c1a6
b5c05cd
0b0c1a6
 
28d0c5f
 
 
74a35d9
5abbb8c
28d0c5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74a35d9
5abbb8c
 
28d0c5f
 
 
 
 
 
 
 
 
 
 
 
 
5abbb8c
28d0c5f
 
5abbb8c
 
 
28d0c5f
 
 
 
 
 
 
 
5abbb8c
28d0c5f
 
 
 
5abbb8c
28d0c5f
 
 
 
5abbb8c
 
28d0c5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5abbb8c
28d0c5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import base64
import json
import os
import tempfile
import time

import audioread
import numpy as np
import torch
from torchaudio.transforms import Resample

from aip_trainer import WordMatching as wm, app_logger
from aip_trainer import pronunciationTrainer


trainer_SST_lambda = {
    'de': pronunciationTrainer.getTrainer("de"),
    'en': pronunciationTrainer.getTrainer("en")
}

transform = Resample(orig_freq=48000, new_freq=16000)


def lambda_handler(event, context):
    data = json.loads(event['body'])

    real_text = data['title']
    file_bytes = base64.b64decode(
        data['base64Audio'][22:].encode('utf-8'))
    language = data['language']

    if len(real_text) == 0:
        return {
            'statusCode': 200,
            'headers': {
                'Access-Control-Allow-Headers': '*',
                'Access-Control-Allow-Credentials': "true",
                'Access-Control-Allow-Origin': 'http://127.0.0.1:3000/',
                'Access-Control-Allow-Methods': 'OPTIONS,POST,GET'
            },
            'body': ''
        }

    start0 = time.time()
    with tempfile.NamedTemporaryFile(prefix="temp_sound_speech_score_", suffix=".ogg", delete=False) as f1:
        f1.write(file_bytes)
        duration = time.time() - start0
        app_logger.info(f'Saved binary in file in {duration}s.')
        random_file_name = f1.name

    start = time.time()
    app_logger.info(f'Loading .ogg file file {random_file_name} ...')
    signal, fs = audioread_load(random_file_name)

    duration = time.time() - start
    app_logger.info(f'Read .ogg file {random_file_name} in {duration}s.')

    signal = transform(torch.Tensor(signal)).unsqueeze(0)

    duration = time.time() - start
    app_logger.info(f'Loaded .ogg file {random_file_name} in {duration}s.')

    language_trainer_sst_lambda = trainer_SST_lambda[language]
    app_logger.info('language_trainer_sst_lambda: preparing...')
    result = language_trainer_sst_lambda.processAudioForGivenText(signal, real_text)
    app_logger.info(f'language_trainer_sst_lambda: result: {result}...')

    start = time.time()
    os.remove(random_file_name)
    duration = time.time() - start
    app_logger.info(f'Deleted file {random_file_name} in {duration}s.')

    start = time.time()
    real_transcripts_ipa = ' '.join(
        [word[0] for word in result['real_and_transcribed_words_ipa']])
    matched_transcripts_ipa = ' '.join(
        [word[1] for word in result['real_and_transcribed_words_ipa']])

    real_transcripts = ' '.join(
        [word[0] for word in result['real_and_transcribed_words']])
    matched_transcripts = ' '.join(
        [word[1] for word in result['real_and_transcribed_words']])

    words_real = real_transcripts.lower().split()
    mapped_words = matched_transcripts.split()

    is_letter_correct_all_words = ''
    for idx, word_real in enumerate(words_real):
        mapped_letters, mapped_letters_indices = wm.get_best_mapped_words(
            mapped_words[idx], word_real)

        is_letter_correct = wm.getWhichLettersWereTranscribedCorrectly(
            word_real, mapped_letters)  # , mapped_letters_indices)

        is_letter_correct_all_words += ''.join([str(is_correct)
                                                for is_correct in is_letter_correct]) + ' '

    pair_accuracy_category = ' '.join(
        [str(category) for category in result['pronunciation_categories']])
    duration = time.time() - start
    duration_tot = time.time() - start0
    app_logger.info(f'Time to post-process results: {duration}, tot_duration:{duration_tot}.')

    res = {'real_transcript': result['recording_transcript'],
           'ipa_transcript': result['recording_ipa'],
           'pronunciation_accuracy': str(int(result['pronunciation_accuracy'])),
           'real_transcripts': real_transcripts, 'matched_transcripts': matched_transcripts,
           'real_transcripts_ipa': real_transcripts_ipa, 'matched_transcripts_ipa': matched_transcripts_ipa,
           'pair_accuracy_category': pair_accuracy_category,
           'start_time': result['start_time'],
           'end_time': result['end_time'],
           'is_letter_correct_all_words': is_letter_correct_all_words}

    return json.dumps(res)


# From Librosa

def calc_start_end(sr_native, time_position, n_channels):
    return int(np.round(sr_native * time_position)) * n_channels


def audioread_load(path, offset=0.0, duration=None, dtype=np.float32):
    """Load an audio buffer using audioread.

    This loads one block at a time, and then concatenates the results.
    """

    y = []
    app_logger.debug(f"reading audio file at path:{path} ...")
    with audioread.audio_open(path) as input_file:
        sr_native = input_file.samplerate
        n_channels = input_file.channels

        s_start = calc_start_end(sr_native, offset, n_channels)

        if duration is None:
            s_end = np.inf
        else:
            duration = calc_start_end(sr_native, duration, n_channels)
            s_end = duration + s_start

        n = 0

        for frame in input_file:
            frame = buf_to_float(frame, dtype=dtype)
            n_prev = n
            n = n + len(frame)

            if n < s_start:
                # offset is after the current frame
                # keep reading
                continue

            if s_end < n_prev:
                # we're off the end.  stop reading
                break

            if s_end < n:
                # the end is in this frame.  crop.
                frame = frame[: s_end - n_prev]

            if n_prev <= s_start <= n:
                # beginning is in this frame
                frame = frame[(s_start - n_prev):]

            # tack on the current frame
            y.append(frame)

    if y:
        y = np.concatenate(y)
        if n_channels > 1:
            y = y.reshape((-1, n_channels)).T
    else:
        y = np.empty(0, dtype=dtype)

    return y, sr_native


# From Librosa


def buf_to_float(x, n_bytes=2, dtype=np.float32):
    """Convert an integer buffer to floating point values.
    This is primarily useful when loading integer-valued wav data
    into numpy arrays.

    Parameters
    ----------
    x : np.ndarray [dtype=int]
        The integer-valued data buffer

    n_bytes : int [1, 2, 4]
        The number of bytes per sample in ``x``

    dtype : numeric type
        The target output type (default: 32-bit float)

    Returns
    -------
    x_float : np.ndarray [dtype=float]
        The input data buffer cast to floating point
    """

    # Invert the scale of the data
    scale = 1.0 / float(1 << ((8 * n_bytes) - 1))

    # Construct the format string
    fmt = "<i{:d}".format(n_bytes)

    # Rescale and format the data buffer
    return scale * np.frombuffer(x, fmt).astype(dtype)