Spaces:
Running
Running
File size: 9,288 Bytes
d804881 74a35d9 28d0c5f d804881 5abbb8c 28d0c5f 74a35d9 28d0c5f 74a35d9 28d0c5f 74a35d9 88d40e4 74a35d9 28d0c5f e8a1983 88d40e4 28d0c5f d804881 28d0c5f 3fdcb38 28d0c5f 9ab32d7 d804881 28d0c5f 9ab32d7 d804881 e272322 e2f3a00 e272322 5abbb8c d804881 28d0c5f 5abbb8c 51b11b3 28d0c5f 5abbb8c 28d0c5f 74a35d9 5abbb8c 28d0c5f 0b0c1a6 b5c05cd 0b0c1a6 28d0c5f d804881 74a35d9 5abbb8c 28d0c5f 51b11b3 28d0c5f 74a35d9 5abbb8c ca7e6be 9ab32d7 28d0c5f 9ab32d7 ca7e6be 28d0c5f 9ab32d7 28d0c5f 5abbb8c 28d0c5f 5abbb8c 28d0c5f d804881 28d0c5f 5abbb8c 28d0c5f 5abbb8c 28d0c5f 5abbb8c 28d0c5f 5abbb8c 28d0c5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import base64
import json
import os
from pathlib import Path
import tempfile
import time
import audioread
import numpy as np
import torch
from torchaudio.transforms import Resample
from aip_trainer import WordMatching as wm, app_logger
from aip_trainer import pronunciationTrainer, sample_rate_start
trainer_SST_lambda = {
'de': pronunciationTrainer.getTrainer("de"),
'en': pronunciationTrainer.getTrainer("en")
}
transform = Resample(orig_freq=sample_rate_start, new_freq=16000)
def lambda_handler(event, context):
data = json.loads(event['body'])
real_text = data['title']
base64Audio = data["base64Audio"]
app_logger.debug(f"base64Audio:{base64Audio} ...")
file_bytes_or_audiotmpfile = base64.b64decode(base64Audio[22:].encode('utf-8'))
language = data['language']
if len(real_text) == 0:
return {
'statusCode': 200,
'headers': {
'Access-Control-Allow-Headers': '*',
'Access-Control-Allow-Credentials': "true",
'Access-Control-Allow-Origin': 'http://127.0.0.1:3000/',
'Access-Control-Allow-Methods': 'OPTIONS,POST,GET'
},
'body': ''
}
output = get_speech_to_score_dict(real_text=real_text, file_bytes_or_audiotmpfile=file_bytes_or_audiotmpfile, language=language, remove_random_file=False)
output = json.dumps(output)
app_logger.debug(f"output: {output} ...")
return output
def get_speech_to_score_dict(real_text: str, file_bytes_or_audiotmpfile: str | dict, language: str = "en", remove_random_file: bool = True):
app_logger.info(f"real_text:{real_text} ...")
app_logger.debug(f"file_bytes:{file_bytes_or_audiotmpfile} ...")
app_logger.info(f"language:{language} ...")
if real_text is None or len(real_text) == 0:
raise ValueError(f"cannot read an empty/None text: '{real_text}'...")
if language is None or len(language) == 0:
raise NotImplementedError(f"Not tested/supported with '{language}' language...")
if not isinstance(file_bytes_or_audiotmpfile, (bytes, bytearray)) and (file_bytes_or_audiotmpfile is None or len(file_bytes_or_audiotmpfile) == 0 or os.path.getsize(file_bytes_or_audiotmpfile) == 0):
raise ValueError(f"cannot read an empty/None file: '{file_bytes_or_audiotmpfile}'...")
start0 = time.time()
random_file_name = file_bytes_or_audiotmpfile
app_logger.debug(f"random_file_name:{random_file_name} ...")
if isinstance(file_bytes_or_audiotmpfile, (bytes, bytearray)):
app_logger.debug("writing streaming data to file on disk...")
with tempfile.NamedTemporaryFile(prefix="temp_sound_speech_score_", suffix=".ogg", delete=False) as f1:
f1.write(file_bytes_or_audiotmpfile)
duration = time.time() - start0
app_logger.info(f'Saved binary data in file in {duration}s.')
random_file_name = f1.name
start = time.time()
app_logger.info(f'Loading .ogg file file {random_file_name} ...')
signal, _ = audioread_load(random_file_name)
duration = time.time() - start
app_logger.info(f'Read .ogg file {random_file_name} in {duration}s.')
signal = transform(torch.Tensor(signal)).unsqueeze(0)
duration = time.time() - start
app_logger.info(f'Loaded .ogg file {random_file_name} in {duration}s.')
language_trainer_sst_lambda = trainer_SST_lambda[language]
app_logger.info('language_trainer_sst_lambda: preparing...')
result = language_trainer_sst_lambda.processAudioForGivenText(signal, real_text)
app_logger.info(f'language_trainer_sst_lambda: result: {result}...')
start = time.time()
if remove_random_file:
os.remove(random_file_name)
duration = time.time() - start
app_logger.info(f'Deleted file {random_file_name} in {duration}s.')
start = time.time()
real_transcripts_ipa = ' '.join(
[word[0] for word in result['real_and_transcribed_words_ipa']])
matched_transcripts_ipa = ' '.join(
[word[1] for word in result['real_and_transcribed_words_ipa']])
real_transcripts = ' '.join(
[word[0] for word in result['real_and_transcribed_words']])
matched_transcripts = ' '.join(
[word[1] for word in result['real_and_transcribed_words']])
words_real = real_transcripts.lower().split()
mapped_words = matched_transcripts.split()
is_letter_correct_all_words = ''
for idx, word_real in enumerate(words_real):
mapped_letters, _ = wm.get_best_mapped_words(
mapped_words[idx], word_real
)
is_letter_correct = wm.getWhichLettersWereTranscribedCorrectly(
word_real, mapped_letters) # , mapped_letters_indices)
is_letter_correct_all_words += ''.join([str(is_correct)
for is_correct in is_letter_correct]) + ' '
pair_accuracy_category = ' '.join(
[str(category) for category in result['pronunciation_categories']])
duration = time.time() - start
duration_tot = time.time() - start0
app_logger.info(f'Time to post-process results: {duration}, tot_duration:{duration_tot}.')
pronunciation_accuracy = float(result['pronunciation_accuracy'])
ipa_transcript = result['recording_ipa']
return {'real_transcript': result['recording_transcript'],
'ipa_transcript': ipa_transcript,
'pronunciation_accuracy': float(f"{pronunciation_accuracy:.2f}"),
'real_transcripts': real_transcripts, 'matched_transcripts': matched_transcripts,
'real_transcripts_ipa': real_transcripts_ipa, 'matched_transcripts_ipa': matched_transcripts_ipa,
'pair_accuracy_category': pair_accuracy_category,
'start_time': result['start_time'],
'end_time': result['end_time'],
'is_letter_correct_all_words': is_letter_correct_all_words}
def get_speech_to_score_tuple(real_text: str, file_bytes_or_audiotmpfile: str | dict, language: str = "en", remove_random_file: bool = True):
output = get_speech_to_score_dict(real_text=real_text, file_bytes_or_audiotmpfile=file_bytes_or_audiotmpfile, language=language, remove_random_file=remove_random_file)
real_transcripts = output['real_transcripts']
is_letter_correct_all_words = output['is_letter_correct_all_words']
pronunciation_accuracy = output['pronunciation_accuracy']
ipa_transcript = output['ipa_transcript']
real_transcripts_ipa = output['real_transcripts_ipa']
return real_transcripts, is_letter_correct_all_words, pronunciation_accuracy, ipa_transcript, real_transcripts_ipa, json.dumps(output)
# From Librosa
def calc_start_end(sr_native, time_position, n_channels):
return int(np.round(sr_native * time_position)) * n_channels
def audioread_load(path, offset=0.0, duration=None, dtype=np.float32):
"""Load an audio buffer using audioread.
This loads one block at a time, and then concatenates the results.
"""
import shutil
shutil.copyfile(path, Path("/tmp") / f"test_en_{Path(path).name}")
y = []
app_logger.debug(f"reading audio file at path:{path} ...")
with audioread.audio_open(path) as input_file:
sr_native = input_file.samplerate
n_channels = input_file.channels
s_start = calc_start_end(sr_native, offset, n_channels)
if duration is None:
s_end = np.inf
else:
duration = calc_start_end(sr_native, duration, n_channels)
s_end = duration + s_start
n = 0
for frame in input_file:
frame = buf_to_float(frame, dtype=dtype)
n_prev = n
n = n + len(frame)
if n < s_start:
# offset is after the current frame
# keep reading
continue
if s_end < n_prev:
# we're off the end. stop reading
break
if s_end < n:
# the end is in this frame. crop.
frame = frame[: s_end - n_prev]
if n_prev <= s_start <= n:
# beginning is in this frame
frame = frame[(s_start - n_prev):]
# tack on the current frame
y.append(frame)
if y:
y = np.concatenate(y)
if n_channels > 1:
y = y.reshape((-1, n_channels)).T
else:
y = np.empty(0, dtype=dtype)
return y, sr_native
# From Librosa
def buf_to_float(x, n_bytes=2, dtype=np.float32):
"""Convert an integer buffer to floating point values.
This is primarily useful when loading integer-valued wav data
into numpy arrays.
Parameters
----------
x : np.ndarray [dtype=int]
The integer-valued data buffer
n_bytes : int [1, 2, 4]
The number of bytes per sample in ``x``
dtype : numeric type
The target output type (default: 32-bit float)
Returns
-------
x_float : np.ndarray [dtype=float]
The input data buffer cast to floating point
"""
# Invert the scale of the data
scale = 1.0 / float(1 << ((8 * n_bytes) - 1))
# Construct the format string
fmt = "<i{:d}".format(n_bytes)
# Rescale and format the data buffer
return scale * np.frombuffer(x, fmt).astype(dtype)
|