File size: 8,838 Bytes
74a35d9
 
28d0c5f
 
74a35d9
 
 
 
 
 
 
28d0c5f
 
 
 
 
 
 
 
 
 
 
 
0b0c1a6
 
28d0c5f
 
 
 
 
0b0c1a6
28d0c5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74a35d9
28d0c5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b0c1a6
 
74a35d9
 
 
28d0c5f
 
 
 
74a35d9
 
28d0c5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5c05cd
0b0c1a6
28d0c5f
b5c05cd
28d0c5f
 
b5c05cd
28d0c5f
 
b5c05cd
0b0c1a6
28d0c5f
b5c05cd
28d0c5f
 
0746ae5
28d0c5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0746ae5
28d0c5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import time
from string import punctuation

import epitran
import numpy as np
import torch

from . import WordMatching as wm
from . import WordMetrics
from . import app_logger
from .models import AIModels, ModelInterfaces as mi, RuleBasedModels, models as mo


def getTrainer(language: str):

    device = torch.device('cpu')

    model, decoder = mo.getASRModel(language)
    model = model.to(device)
    model.eval()
    asr_model = AIModels.NeuralASR(model, decoder)

    if language == 'de':
        epitran_deu_latn = epitran.Epitran('deu-Latn')
        phonem_converter = RuleBasedModels.EpitranPhonemConverter(epitran_deu_latn)
    elif language == 'en':
        phonem_converter = RuleBasedModels.EngPhonemConverter()
    else:
        raise ValueError('Language not implemented')

    trainer = PronunciationTrainer(asr_model, phonem_converter)

    return trainer


class PronunciationTrainer:
    current_transcript: str
    current_ipa: str

    current_recorded_audio: torch.Tensor
    current_recorded_transcript: str
    current_recorded_word_locations: list
    current_recorded_intonations: torch.tensor
    current_words_pronunciation_accuracy = []
    categories_thresholds = np.array([80, 60, 59])

    sampling_rate = 16000

    def __init__(self, asr_model: mi.IASRModel, word_to_ipa_coverter: mi.ITextToPhonemModel) -> None:
        self.asr_model = asr_model
        self.ipa_converter = word_to_ipa_coverter

    def getTranscriptAndWordsLocations(self, audio_length_in_samples: int):

        audio_transcript = self.asr_model.getTranscript()
        word_locations_in_samples = self.asr_model.getWordLocations()

        fade_duration_in_samples = 0.05*self.sampling_rate
        word_locations_in_samples = [(int(np.maximum(0, word['start_ts']-fade_duration_in_samples)), int(np.minimum(
            audio_length_in_samples-1, word['end_ts']+fade_duration_in_samples))) for word in word_locations_in_samples]

        return audio_transcript, word_locations_in_samples

    def getWordsRelativeIntonation(self, Audio: torch.tensor, word_locations: list):
        intonations = torch.zeros((len(word_locations), 1))
        intonation_fade_samples = 0.3*self.sampling_rate
        app_logger.info(intonations.shape)
        for word in range(len(word_locations)):
            intonation_start = int(np.maximum(
                0, word_locations[word][0]-intonation_fade_samples))
            intonation_end = int(np.minimum(
                Audio.shape[1]-1, word_locations[word][1]+intonation_fade_samples))
            intonations[word] = torch.sqrt(torch.mean(
                Audio[0][intonation_start:intonation_end]**2))

        intonations = intonations/torch.mean(intonations)
        return intonations

    ##################### ASR Functions ###########################

    def processAudioForGivenText(self, recordedAudio: torch.Tensor = None, real_text=None):

        start = time.time()
        app_logger.info(f'starting getAudioTranscript...')
        recording_transcript, recording_ipa, word_locations = self.getAudioTranscript(recordedAudio)

        duration = time.time() - start
        app_logger.info(f'Time for NN to transcript audio: {duration}.')

        start = time.time()
        real_and_transcribed_words, real_and_transcribed_words_ipa, mapped_words_indices = self.matchSampleAndRecordedWords(
            real_text, recording_transcript)
        duration = time.time() - start
        app_logger.info(f'Time for matching transcripts: {duration}.')

        start_time, end_time = self.getWordLocationsFromRecordInSeconds(
            word_locations, mapped_words_indices)

        pronunciation_accuracy, current_words_pronunciation_accuracy = self.getPronunciationAccuracy(
            real_and_transcribed_words)  # _ipa

        pronunciation_categories = self.getWordsPronunciationCategory(
            current_words_pronunciation_accuracy)

        result = {'recording_transcript': recording_transcript,
                  'real_and_transcribed_words': real_and_transcribed_words,
                  'recording_ipa': recording_ipa, 'start_time': start_time, 'end_time': end_time,
                  'real_and_transcribed_words_ipa': real_and_transcribed_words_ipa, 'pronunciation_accuracy': pronunciation_accuracy,
                  'pronunciation_categories': pronunciation_categories}

        return result

    def getAudioTranscript(self, recordedAudio: torch.Tensor = None):
        current_recorded_audio = recordedAudio

        app_logger.info('starting preprocessAudio...')
        current_recorded_audio = self.preprocessAudio(current_recorded_audio)

        app_logger.info('starting processAudio...')
        self.asr_model.processAudio(current_recorded_audio)

        app_logger.info('starting getTranscriptAndWordsLocations...')
        current_recorded_transcript, current_recorded_word_locations = self.getTranscriptAndWordsLocations(
            current_recorded_audio.shape[1])
        app_logger.info('starting convertToPhonem...')
        current_recorded_ipa = self.ipa_converter.convertToPhonem(current_recorded_transcript)

        app_logger.info('ok, return audio transcript!')
        return current_recorded_transcript, current_recorded_ipa, current_recorded_word_locations

    def getWordLocationsFromRecordInSeconds(self, word_locations, mapped_words_indices) -> tuple[str, str]:
        start_time = []
        end_time = []
        for word_idx in range(len(mapped_words_indices)):
            start_time.append(float(word_locations[mapped_words_indices[word_idx]]
                                    [0])/self.sampling_rate)
            end_time.append(float(word_locations[mapped_words_indices[word_idx]]
                                  [1])/self.sampling_rate)
        return ' '.join([str(time) for time in start_time]), ' '.join([str(time) for time in end_time])

    ##################### END ASR Functions ###########################

    ##################### Evaluation Functions ###########################
    def matchSampleAndRecordedWords(self, real_text, recorded_transcript):
        words_estimated = recorded_transcript.split()

        if real_text is None:
            words_real = self.current_transcript[0].split()
        else:
            words_real = real_text.split()

        mapped_words, mapped_words_indices = wm.get_best_mapped_words(
            words_estimated, words_real)

        real_and_transcribed_words = []
        real_and_transcribed_words_ipa = []
        for word_idx in range(len(words_real)):
            if word_idx >= len(mapped_words)-1:
                mapped_words.append('-')
            real_and_transcribed_words.append(
                (words_real[word_idx],    mapped_words[word_idx]))
            real_and_transcribed_words_ipa.append((self.ipa_converter.convertToPhonem(words_real[word_idx]),
                                                   self.ipa_converter.convertToPhonem(mapped_words[word_idx])))
        return real_and_transcribed_words, real_and_transcribed_words_ipa, mapped_words_indices

    def getPronunciationAccuracy(self, real_and_transcribed_words_ipa) -> tuple[float, list]:
        total_mismatches = 0.
        number_of_phonemes = 0.
        current_words_pronunciation_accuracy = []
        for pair in real_and_transcribed_words_ipa:

            real_without_punctuation = self.removePunctuation(pair[0]).lower()
            number_of_word_mismatches = WordMetrics.edit_distance_python(
                real_without_punctuation, self.removePunctuation(pair[1]).lower())
            total_mismatches += number_of_word_mismatches
            number_of_phonemes_in_word = len(real_without_punctuation)
            number_of_phonemes += number_of_phonemes_in_word

            current_words_pronunciation_accuracy.append(float(
                number_of_phonemes_in_word-number_of_word_mismatches)/number_of_phonemes_in_word*100)

        percentage_of_correct_pronunciations = (
            number_of_phonemes-total_mismatches)/number_of_phonemes*100

        return np.round(percentage_of_correct_pronunciations), current_words_pronunciation_accuracy

    def removePunctuation(self, word: str) -> str:
        return ''.join([char for char in word if char not in punctuation])

    def getWordsPronunciationCategory(self, accuracies) -> list:
        categories = []

        for accuracy in accuracies:
            categories.append(
                self.getPronunciationCategoryFromAccuracy(accuracy))

        return categories

    def getPronunciationCategoryFromAccuracy(self, accuracy) -> int:
        return np.argmin(abs(self.categories_thresholds-accuracy))

    def preprocessAudio(self, audio: torch.tensor) -> torch.tensor:
        audio = audio-torch.mean(audio)
        audio = audio/torch.max(torch.abs(audio))
        return audio