File size: 2,515 Bytes
b787616
 
d9b4271
14f90e3
59718b5
ea3872d
24d3971
82e5d3a
59718b5
b787616
0b21467
5dbcf27
0b21467
 
 
6085806
 
 
b787616
6085806
59718b5
 
b787616
 
8ceea03
59718b5
b787616
24d3971
 
 
 
 
 
 
50e3646
24d3971
21f99c2
 
 
 
 
 
 
 
 
 
 
 
24d3971
 
 
 
 
 
 
0ff4e79
 
 
 
ea3872d
59718b5
ea3872d
59718b5
82e5d3a
59718b5
14f90e3
 
d9b4271
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import streamlit as st
import pandas as pd
import streamlit_common.footer
import streamlit_common.lib as lib
import streamlit_common.locale

mslist_path = "output/middleschool_extra_fields.csv"
number_shown_results = 20
_ = streamlit_common.locale.get_locale()

st.set_page_config(
    page_title="MTG Middle School | Card Search",
    page_icon="🃏",
    layout="wide",
)
lang = st.sidebar.radio(
    label="Language / 言語",
    options=["English", "日本語"],
)
l = "ja" if lang == "日本語" else "en"
st.write(f'# {_["search"]["title"][l]}')
st.write(_["search"]["instructions"][l])

mslist_df = pd.read_csv(mslist_path)
mslist_df.fillna("", inplace=True)
st.write(f'**{mslist_df.shape[0]}**{_["search"]["cards_are_legal"][l]}')

results_df = mslist_df

# Filter by card name
input_name = st.text_input(_["search"]["search_by_card_name"][l]).strip()
exact_match = lib.get_legal_cardnames(input_name, mslist_df)
results_en_df = results_df[results_df["name"].str.contains(input_name, case=False)]
results_ja_df = results_df[results_df["name_ja"].str.contains(input_name, case=False)]
results_df = results_en_df.merge(results_ja_df, how="outer")

col1, col2 = st.columns(2)

# Filter by type (select)
select_types = col1.multiselect(
    _["search"]["select_type"][l],
    ["Artifact", "Creature", "Enchantment", "Instant", "Land", "Sorcery"],
)
for cardtype in select_types:
    results_df = results_df[results_df["type"].str.contains(cardtype, case=False)]

# Filter by type (text input)
input_type = col2.text_input(_["search"]["search_by_type"][l]).strip()
results_df = results_df[results_df["type"].str.contains(input_type, case=False)]

# Filter by text
input_text = st.text_input(_["search"]["search_by_text"][l]).strip()
results_df = results_df[results_df["text"].str.contains(input_text, case=False)]

if results_df.shape[0] < mslist_df.shape[0]:
    if exact_match[0]:
        cardname = exact_match[1]
        if exact_match[2] is not None:
            cardname = f"{cardname} / {exact_match[2]}"
        st.write(
            f'✅ [{cardname}]({lib.compose_scryfall_url(exact_match[1])}) {_["search"]["exact_match"][l]}'
        )
    st.write(f'**{results_df.shape[0]}**{_["search"]["cards_found"][l]}')
    if results_df.shape[0] > number_shown_results:
        st.write(_["search"]["top_results"][l])
    results_df["link"] = results_df["name"].apply(lib.compose_scryfall_url)
    results_df[:number_shown_results].transpose().apply(lib.row_to_link)

streamlit_common.footer.write_footer()