File size: 7,408 Bytes
2a0b1db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0986800
2a0b1db
0986800
2a0b1db
 
 
0986800
2a0b1db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efca0f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a0b1db
 
 
 
 
96f87e4
2a0b1db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import re
from datetime import datetime

import gradio as gr
import torch
import pandas as pd
import soundfile as sf
import torchaudio

from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from src.transcription import SpeechEncoder
from src.sentiment import TextEncoder

# Configuration pour Hugging Face Spaces
HF_SPACE = os.getenv("HF_SPACE", "false").lower() == "true"

# Préchargement des modèles
print("Chargement des modèles...")
# Modèle français plus léger
processor_ctc = Wav2Vec2Processor.from_pretrained(
    "LeBenchmark/wav2vec2-FR-2K-small", 
    cache_dir="./models" if not HF_SPACE else None
)
model_ctc = Wav2Vec2ForCTC.from_pretrained(
    "LeBenchmark/wav2vec2-FR-2K-small", 
    cache_dir="./models" if not HF_SPACE else None
)

speech_enc = SpeechEncoder()
text_enc = TextEncoder()
print("Modèles chargés avec succès!")

# Pipeline d'analyse
def analyze_audio(audio_path):
    if audio_path is None:
        return "Aucun audio fourni", "", pd.DataFrame(), {}
    
    try:
        # Lecture et prétraitement
        data, sr = sf.read(audio_path)
        arr = data.T if data.ndim > 1 else data
        wav = torch.from_numpy(arr).unsqueeze(0).float()
        if sr != 16000:
            wav = torchaudio.transforms.Resample(sr, 16000)(wav)
            sr = 16000
        if wav.size(0) > 1:
            wav = wav.mean(dim=0, keepdim=True)

        # Transcription
        inputs = processor_ctc(wav.squeeze().numpy(), sampling_rate=sr, return_tensors="pt")
        with torch.no_grad():
            logits = model_ctc(**inputs).logits
        pred_ids = torch.argmax(logits, dim=-1)
        transcription = processor_ctc.batch_decode(pred_ids)[0].lower()

        # Sentiment principal
        sent_dict = TextEncoder.analyze_sentiment(transcription)
        label, conf = max(sent_dict.items(), key=lambda x: x[1])
        emojis = {"positif": "😊", "neutre": "😐", "négatif": "☹️"}
        emoji = emojis.get(label, "")

        # Segmentation par phrase
        segments = [s.strip() for s in re.split(r'[.?!]', transcription) if s.strip()]
        seg_results = []
        for seg in segments:
            sd = TextEncoder.analyze_sentiment(seg)
            l, c = max(sd.items(), key=lambda x: x[1])
            seg_results.append({"Segment": seg, "Sentiment": l.capitalize(), "Confiance (%)": round(c*100,1)})
        seg_df = pd.DataFrame(seg_results)

        # Historique entry
        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        history_entry = {
            "Horodatage": timestamp,
            "Transcription": transcription,
            "Sentiment": label.capitalize(),
            "Confiance (%)": round(conf*100,1)
        }

        # Rendu
        summary_html = (
            f"<div style='display:flex;align-items:center;'>"
            f"<span style='font-size:3rem;margin-right:10px;'>{emoji}</span>"
            f"<h2 style='color:#6a0dad;'>{label.upper()}</h2>"
            f"</div>"
            f"<p><strong>Confiance :</strong> {conf*100:.1f}%</p>"
        )
        return transcription, summary_html, seg_df, history_entry
    
    except Exception as e:
        error_msg = f"Erreur lors de l'analyse: {str(e)}"
        return error_msg, "", pd.DataFrame(), {}

# Export CSV
def export_history_csv(history):
    if not history:
        return None
    df = pd.DataFrame(history)
    path = "history.csv"
    df.to_csv(path, index=False)
    return path

# Interface Gradio
demo = gr.Blocks(
    theme=gr.themes.Monochrome(primary_hue="purple"),
    title="Analyse de Sentiment Audio - Hugging Face Space"
)

with demo:
    gr.Markdown("""
    # 🎤 Analyse de Sentiment Audio
    
    Ce Space permet d'analyser le sentiment d'extraits audio en français en combinant :
    - **Transcription audio** avec Wav2Vec2
    - **Analyse de sentiment** avec BERT multilingue
    """)

    gr.HTML("""
    <div style="display: flex; flex-direction: column; gap: 10px; margin-bottom: 20px;">
        <div style="background-color: #f3e8ff; padding: 12px 20px; border-radius: 12px; border-left: 5px solid #8e44ad;">
            <strong>Étape 1 :</strong> Enregistrez votre voix ou téléversez un fichier audio (format WAV recommandé).
        </div>
        <div style="background-color: #e0f7fa; padding: 12px 20px; border-radius: 12px; border-left: 5px solid #0097a7;">
            <strong>Étape 2 :</strong> Cliquez sur le bouton <em><b>Analyser</b></em> pour lancer la transcription et l'analyse.
        </div>
        <div style="background-color: #fff3e0; padding: 12px 20px; border-radius: 12px; border-left: 5px solid #fb8c00;">
            <strong>Étape 3 :</strong> Visualisez les résultats : transcription, sentiment, et analyse détaillée.
        </div>
        <div style="background-color: #e8f5e9; padding: 12px 20px; border-radius: 12px; border-left: 5px solid #43a047;">
            <strong>Étape 4 :</strong> Exportez l'historique des analyses au format CSV si besoin.
        </div>
    </div>
    """)

    # Section API
    with gr.Accordion("🔌 API REST", open=False):
        gr.Markdown("""
        ### Endpoints disponibles :
        
        - **`/api/predict`** - Analyse audio (POST)
        - **`/api/predict_text`** - Analyse textuelle (POST)
        - **`/api/health`** - Vérification état (GET)
        - **`/api/docs`** - Documentation Swagger
        
        ### Exemple d'utilisation :
        ```bash
        curl -X POST "https://huggingface.co/spaces/<username>/sentiment-audio-analyzer/api/predict" \
             -F "file=@audio.wav"
        ```
        """)

    with gr.Row():
        with gr.Column(scale=2):
            audio_in = gr.Audio(
                sources=["microphone", "upload"], 
                type="filepath", 
                label="Audio Input"
            )
            btn = gr.Button("🔍 Analyser", variant="primary")
            export_btn = gr.Button("📊 Exporter CSV")
        
        with gr.Column(scale=3):
            chat = gr.Chatbot(label="Historique des échanges")
            transcription_out = gr.Textbox(label="Transcription", interactive=False)
            summary_out = gr.HTML(label="Sentiment")
            seg_out = gr.Dataframe(label="Détail par segment")
            hist_out = gr.Dataframe(label="Historique")

    state_chat = gr.State([])  # list of (user,bot)
    state_hist = gr.State([])  # list of dict entries

    def chat_callback(audio_path, chat_history, hist_state):
        transcription, summary, seg_df, hist_entry = analyze_audio(audio_path)
        user_msg = "[Audio reçu]"
        bot_msg = f"**Transcription :** {transcription}\n**Sentiment :** {summary}"
        chat_history = chat_history + [(user_msg, bot_msg)]
        if hist_entry:
            hist_state = hist_state + [hist_entry]
        return chat_history, transcription, summary, seg_df, hist_state

    btn.click(
        fn=chat_callback,
        inputs=[audio_in, state_chat, state_hist],
        outputs=[chat, transcription_out, summary_out, seg_out, state_hist]
    )
    
    export_btn.click(
        fn=export_history_csv,
        inputs=[state_hist],
        outputs=[gr.File(label="Télécharger CSV")]
    )

# Configuration pour Hugging Face Spaces
if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0" if HF_SPACE else "127.0.0.1",
        server_port=7860,
        share=False
    )