File size: 5,603 Bytes
0a63786
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from dataclasses import dataclass
import torch
import numpy as np

@dataclass
class Edit:
    old: str
    new: str
    weight: float = 1.0


@dataclass
class Insert:
    text: str
    weight: float = 1.0

    @property
    def old(self):
        return ""

    @property
    def new(self):
        return self.text


@dataclass
class Delete:
    text: str
    weight: float = 1.0

    @property
    def old(self):
        return self.text

    @property
    def new(self):
        return ""


@dataclass
class Text:
    text: str
    weight: float = 1.0

    @property
    def old(self):
        return self.text

    @property
    def new(self):
        return self.text

@torch.inference_mode()
def get_text_embedding(prompt, tokenizer, text_encoder):
    text_input_ids = tokenizer(
        prompt,
        padding="max_length",
        truncation=True,
        max_length=tokenizer.model_max_length,
        return_tensors="pt",
    ).input_ids
    text_embeddings = text_encoder(text_input_ids.to(text_encoder.device))[0]
    return text_embeddings

@torch.inference_mode()
def encode_text(text_pieces, tokenizer, text_encoder):
    n_old_tokens = 0
    n_new_tokens = 0
    new_id_to_old_id = []
    weights = []
    for piece in text_pieces:
        old, new = piece.old, piece.new
        old_tokens = tokenizer.tokenize(old)
        new_tokens = tokenizer.tokenize(new)
        if len(old_tokens) == 0 and len(new_tokens) == 0:
            continue
        elif old == new:
            n_old_tokens += len(old_tokens)
            n_new_tokens += len(new_tokens)
            new_id_to_old_id.extend(range(n_old_tokens - len(old_tokens), n_old_tokens))
        elif len(old_tokens) == 0:
            # insert
            new_id_to_old_id.extend([-1] * len(new_tokens))
            n_new_tokens += len(new_tokens)
        elif len(new_tokens) == 0:
            # delete
            n_old_tokens += len(old_tokens)
        else:
            # replace
            n_old_tokens += len(old_tokens)
            n_new_tokens += len(new_tokens)
            start = n_old_tokens - len(old_tokens)
            end = n_old_tokens
            ids = np.linspace(start, end, len(new_tokens), endpoint=False).astype(int)
            new_id_to_old_id.extend(list(ids))
        weights.extend([piece.weight] * len(new_tokens))

    old_prompt = " ".join([piece.old for piece in text_pieces])
    new_prompt = " ".join([piece.new for piece in text_pieces])
    old_text_input_ids = tokenizer(
        old_prompt,
        padding="max_length",
        truncation=True,
        max_length=tokenizer.model_max_length,
        return_tensors="pt",
    ).input_ids
    new_text_input_ids = tokenizer(
        new_prompt,
        padding="max_length",
        truncation=True,
        max_length=tokenizer.model_max_length,
        return_tensors="pt",
    ).input_ids

    old_text_embeddings = text_encoder(old_text_input_ids.to(text_encoder.device))[0]
    new_text_embeddings = text_encoder(new_text_input_ids.to(text_encoder.device))[0]
    value = new_text_embeddings.clone()  # batch (1), seq, dim
    key = new_text_embeddings.clone()

    for i, (j, weight) in enumerate(zip(new_id_to_old_id, weights)):
        if 0 <= j < old_text_embeddings.shape[1]:
            key[0, i] = old_text_embeddings[0, j]
        value[0, i] *= weight
    return key, value

@torch.inference_mode()
def get_text_embedding_openclip(prompt, text_encoder, device='cuda'):
    import open_clip
    text_input_ids = open_clip.tokenize(prompt)
    text_embeddings = text_encoder(text_input_ids.to(device))
    return text_embeddings

@torch.inference_mode()
def encode_text_openclip(text_pieces, text_encoder, device='cuda'):
    import open_clip
    n_old_tokens = 0
    n_new_tokens = 0
    new_id_to_old_id = []
    weights = []
    for piece in text_pieces:
        old, new = piece.old, piece.new
        old_tokens = open_clip.tokenize(old)
        new_tokens = open_clip.tokenize(new)
        if len(old_tokens) == 0 and len(new_tokens) == 0:
            continue
        elif old == new:
            n_old_tokens += len(old_tokens)
            n_new_tokens += len(new_tokens)
            new_id_to_old_id.extend(range(n_old_tokens - len(old_tokens), n_old_tokens))
        elif len(old_tokens) == 0:
            # insert
            new_id_to_old_id.extend([-1] * len(new_tokens))
            n_new_tokens += len(new_tokens)
        elif len(new_tokens) == 0:
            # delete
            n_old_tokens += len(old_tokens)
        else:
            # replace
            n_old_tokens += len(old_tokens)
            n_new_tokens += len(new_tokens)
            start = n_old_tokens - len(old_tokens)
            end = n_old_tokens
            ids = np.linspace(start, end, len(new_tokens), endpoint=False).astype(int)
            new_id_to_old_id.extend(list(ids))
        weights.extend([piece.weight] * len(new_tokens))

    old_prompt = " ".join([piece.old for piece in text_pieces])
    new_prompt = " ".join([piece.new for piece in text_pieces])
    old_text_input_ids = open_clip.tokenize(old_prompt)
    new_text_input_ids = open_clip.tokenize(new_prompt)

    old_text_embeddings = text_encoder(old_text_input_ids.to(device))
    new_text_embeddings = text_encoder(new_text_input_ids.to(device))
    value = new_text_embeddings.clone()  # batch (1), seq, dim
    key = new_text_embeddings.clone()

    for i, (j, weight) in enumerate(zip(new_id_to_old_id, weights)):
        if 0 <= j < old_text_embeddings.shape[1]:
            key[0, i] = old_text_embeddings[0, j]
        value[0, i] *= weight
    return key, value