File size: 8,971 Bytes
a284200 a6fe316 ade8cf8 90d214f d0eefa8 378f418 a284200 90d214f a6fe316 e22de9e 378f418 21583be 378f418 21583be 378f418 a6fe316 378f418 a6fe316 378f418 a6fe316 90d214f 378f418 90d214f 378f418 90d214f 378f418 350d57a 378f418 90d214f 378f418 90d214f 378f418 a284200 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import time
import streamlit as st
import pandas as pd
import os
from dotenv import load_dotenv
import search # Import the search module
from transformers import AutoTokenizer, AutoModelForCausalLM
from docx import Document
from pdfminer.high_level import extract_text
from dataclasses import dataclass
from typing import List
from tqdm import tqdm
import re
from sklearn.feature_extraction.text import TfidfVectorizer
load_dotenv()
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", trust_remote_code=True)
EMBEDDING_SEG_LEN = 1500
EMBEDDING_MODEL = "gpt-4"
EMBEDDING_CTX_LENGTH = 8191
EMBEDDING_ENCODING = "cl100k_base"
ENCODING = "gpt2"
@dataclass
class Paragraph:
page_num: int
paragraph_num: int
content: str
def read_pdf_pdfminer(file_path) -> List[Paragraph]:
text = extract_text(file_path).replace('\n', ' ').strip()
paragraphs = batched(text, EMBEDDING_SEG_LEN)
paragraphs_objs = []
paragraph_num = 1
for p in paragraphs:
para = Paragraph(0, paragraph_num, p)
paragraphs_objs.append(para)
paragraph_num += 1
return paragraphs_objs
def read_docx(file) -> List[Paragraph]:
doc = Document(file)
paragraphs = []
for paragraph_num, paragraph in enumerate(doc.paragraphs, start=1):
content = paragraph.text.strip()
if content:
para = Paragraph(1, paragraph_num, content)
paragraphs.append(para)
return paragraphs
def count_tokens(text, tokenizer):
return len(tokenizer.encode(text))
def batched(iterable, n):
l = len(iterable)
for ndx in range(0, l, n):
yield iterable[ndx : min(ndx + n, l)]
def compute_doc_embeddings(df, tokenizer):
embeddings = {}
for index, row in tqdm(df.iterrows(), total=df.shape[0]):
doc = row["content"]
doc_embedding = get_embedding(doc, tokenizer)
embeddings[index] = doc_embedding
return embeddings
def enhanced_context_extraction(document, keywords, vectorizer, tfidf_scores, top_n=5):
paragraphs = [para for para in document.split("\n") if para]
scores = [sum([para.lower().count(keyword) * tfidf_scores[vectorizer.vocabulary_[keyword]] for keyword in keywords if keyword in para.lower()]) for para in paragraphs]
top_indices = sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)[:top_n]
relevant_paragraphs = [paragraphs[i] for i in top_indices]
return " ".join(relevant_paragraphs)
def targeted_context_extraction(document, keywords, vectorizer, tfidf_scores, top_n=5):
paragraphs = [para for para in document.split("\n") if para]
scores = [sum([para.lower().count(keyword) * tfidf_scores[vectorizer.vocabulary_[keyword]] for keyword in keywords]) for para in paragraphs]
top_indices = sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)[:top_n]
relevant_paragraphs = [paragraphs[i] for i in top_indices]
return " ".join(relevant_paragraphs)
def extract_page_and_clause_references(paragraph: str) -> str:
page_matches = re.findall(r'Page (\d+)', paragraph)
clause_matches = re.findall(r'Clause (\d+\.\d+)', paragraph)
page_ref = f"Page {page_matches[0]}" if page_matches else ""
clause_ref = f"Clause {clause_matches[0]}" if clause_matches else ""
return f"({page_ref}, {clause_ref})".strip(", ")
def refine_answer_based_on_question(question: str, answer: str) -> str:
if "Does the agreement contain" in question:
if "not" in answer or "No" in answer:
refined_answer = f"No, the agreement does not contain {answer}"
else:
refined_answer = f"Yes, the agreement contains {answer}"
else:
refined_answer = answer
return refined_answer
def answer_query_with_context(question: str, df: pd.DataFrame, tokenizer, model, top_n_paragraphs: int = 5) -> str:
question_words = set(question.split())
priority_keywords = ["duration", "term", "period", "month", "year", "day", "week", "agreement", "obligation", "effective date"]
df['relevance_score'] = df['content'].apply(lambda x: len(question_words.intersection(set(x.split()))) + sum([x.lower().count(pk) for pk in priority_keywords]))
most_relevant_paragraphs = df.sort_values(by='relevance_score', ascending=False).iloc[:top_n_paragraphs]['content'].tolist()
context = "\n\n".join(most_relevant_paragraphs)
prompt = f"Question: {question}\n\nContext: {context}\n\nAnswer:"
inputs = tokenizer.encode(prompt, return_tensors="pt", max_length=512, truncation=True)
outputs = model.generate(inputs, max_length=600)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
references = extract_page_and_clause_references(context)
answer = refine_answer_based_on_question(question, answer) + " " + references
return answer
def get_embedding(text, tokenizer):
try:
inputs = tokenizer(text, return_tensors="pt", max_length=512, truncation=True)
outputs = model(**inputs)
embedding = outputs.last_hidden_state
except Exception as e:
print("Error obtaining embedding:", e)
embedding = []
return embedding
def save_as_pdf(conversation):
pdf_filename = "conversation.pdf"
c = canvas.Canvas(pdf_filename, pagesize=letter)
c.drawString(100, 750, "Conversation:")
y_position = 730
for q, a in conversation:
c.drawString(120, y_position, f"Q: {q}")
c.drawString(120, y_position - 20, f"A: {a}")
y_position -= 40
c.save()
st.markdown(f"Download [PDF](./{pdf_filename})")
def save_as_docx(conversation):
doc = Document()
doc.add_heading('Conversation', 0)
for q, a in conversation:
doc.add_paragraph(f'Q: {q}')
doc.add_paragraph(f'A: {a}')
doc_filename = "conversation.docx"
doc.save(doc_filename)
st.markdown(f"Download [DOCX](./{doc_filename})")
def save_as_xlsx(conversation):
df = pd.DataFrame(conversation, columns=["Question", "Answer"])
xlsx_filename = "conversation.xlsx"
df.to_excel(xlsx_filename, index=False)
st.markdown(f"Download [XLSX](./{xlsx_filename})")
def save_as_txt(conversation):
txt_filename = "conversation.txt"
with open(txt_filename, "w") as txt_file:
for q, a in conversation:
txt_file.write(f"Q: {q}\nA: {a}\n\n")
st.markdown(f"Download [TXT](./{txt_filename})")
def main():
st.markdown('<h1>Ask anything from Legal Texts</h1><p style="font-size: 12; color: gray;"></p>', unsafe_allow_html=True)
st.markdown("<h2>Upload documents</h2>", unsafe_allow_html=True)
uploaded_files = st.file_uploader("Upload one or more documents", type=['pdf', 'docx'], accept_multiple_files=True)
question = st.text_input("Ask a question based on the documents", key="question_input")
progress = st.progress(0)
for i in range(100):
progress.progress(i + 1)
time.sleep(0.01)
if uploaded_files:
df = pd.DataFrame(columns=["page_num", "paragraph_num", "content", "tokens"])
for uploaded_file in uploaded_files:
paragraphs = read_pdf_pdfminer(uploaded_file) if uploaded_file.type == "application/pdf" else read_docx(uploaded_file)
temp_df = pd.DataFrame(
[(p.page_num, p.paragraph_num, p.content, count_tokens(p.content, tokenizer))
for p in paragraphs],
columns=["page_num", "paragraph_num", "content", "tokens"]
)
df = pd.concat([df, temp_df], ignore_index=True)
if "interactions" not in st.session_state:
st.session_state["interactions"] = []
answer = ""
if question != st.session_state.get("last_question", ""):
st.text("Searching...")
answer = answer_query_with_context(question, df, tokenizer, model)
st.session_state["interactions"].append((question, answer))
st.write(answer)
st.markdown("### Interaction History")
for q, a in st.session_state["interactions"]:
st.write(f"**Q:** {q}\n\n**A:** {a}")
st.session_state["last_question"] = question
st.markdown("<h2>Sample paragraphs</h2>", unsafe_allow_html=True)
sample_size = min(len(df), 5)
st.dataframe(df.sample(n=sample_size))
if st.button("Save as PDF"):
save_as_pdf(st.session_state["interactions"])
if st.button("Save as DOCX"):
save_as_docx(st.session_state["interactions"])
if st.button("Save as XLSX"):
save_as_xlsx(st.session_state["interactions"])
if st.button("Save as TXT"):
save_as_txt(st.session_state["interactions"])
else:
st.markdown("<h2>Please upload a document to proceed.</h2>", unsafe_allow_html=True)
if __name__ == "__main__":
main()
|