File size: 8,971 Bytes
a284200
 
 
 
 
 
a6fe316
ade8cf8
90d214f
d0eefa8
378f418
 
 
 
a284200
 
90d214f
a6fe316
 
e22de9e
378f418
 
 
 
 
 
 
21583be
 
 
 
 
 
378f418
21583be
378f418
 
a6fe316
378f418
 
 
a6fe316
378f418
 
 
 
 
 
 
 
 
 
a6fe316
90d214f
378f418
 
 
90d214f
 
 
378f418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90d214f
378f418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
350d57a
378f418
 
 
 
 
 
 
 
90d214f
378f418
90d214f
 
 
 
378f418
 
a284200
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import time
import streamlit as st
import pandas as pd
import os
from dotenv import load_dotenv
import search  # Import the search module
from transformers import AutoTokenizer, AutoModelForCausalLM
from docx import Document
from pdfminer.high_level import extract_text
from dataclasses import dataclass
from typing import List
from tqdm import tqdm
import re
from sklearn.feature_extraction.text import TfidfVectorizer

load_dotenv()

tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", trust_remote_code=True)

EMBEDDING_SEG_LEN = 1500
EMBEDDING_MODEL = "gpt-4" 

EMBEDDING_CTX_LENGTH = 8191
EMBEDDING_ENCODING = "cl100k_base"
ENCODING = "gpt2"

@dataclass
class Paragraph:
    page_num: int
    paragraph_num: int
    content: str

def read_pdf_pdfminer(file_path) -> List[Paragraph]:
    text = extract_text(file_path).replace('\n', ' ').strip()
    paragraphs = batched(text, EMBEDDING_SEG_LEN)
    paragraphs_objs = []
    paragraph_num = 1
    for p in paragraphs:
        para = Paragraph(0, paragraph_num, p)
        paragraphs_objs.append(para)
        paragraph_num += 1
    return paragraphs_objs

def read_docx(file) -> List[Paragraph]:
    doc = Document(file)
    paragraphs = []
    for paragraph_num, paragraph in enumerate(doc.paragraphs, start=1):
        content = paragraph.text.strip()
        if content:
            para = Paragraph(1, paragraph_num, content)
            paragraphs.append(para)
    return paragraphs

def count_tokens(text, tokenizer):
    return len(tokenizer.encode(text))

def batched(iterable, n):
    l = len(iterable)
    for ndx in range(0, l, n):
        yield iterable[ndx : min(ndx + n, l)]

def compute_doc_embeddings(df, tokenizer):
    embeddings = {}
    for index, row in tqdm(df.iterrows(), total=df.shape[0]):
        doc = row["content"]
        doc_embedding = get_embedding(doc, tokenizer)
        embeddings[index] = doc_embedding
    return embeddings

def enhanced_context_extraction(document, keywords, vectorizer, tfidf_scores, top_n=5):
    paragraphs = [para for para in document.split("\n") if para]
    scores = [sum([para.lower().count(keyword) * tfidf_scores[vectorizer.vocabulary_[keyword]] for keyword in keywords if keyword in para.lower()]) for para in paragraphs]

    top_indices = sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)[:top_n]
    relevant_paragraphs = [paragraphs[i] for i in top_indices]
    
    return " ".join(relevant_paragraphs)

def targeted_context_extraction(document, keywords, vectorizer, tfidf_scores, top_n=5):
    paragraphs = [para for para in document.split("\n") if para]
    scores = [sum([para.lower().count(keyword) * tfidf_scores[vectorizer.vocabulary_[keyword]] for keyword in keywords]) for para in paragraphs]

    top_indices = sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)[:top_n]
    relevant_paragraphs = [paragraphs[i] for i in top_indices]
    
    return " ".join(relevant_paragraphs)


def extract_page_and_clause_references(paragraph: str) -> str:
    page_matches = re.findall(r'Page (\d+)', paragraph)
    clause_matches = re.findall(r'Clause (\d+\.\d+)', paragraph)
    
    page_ref = f"Page {page_matches[0]}" if page_matches else ""
    clause_ref = f"Clause {clause_matches[0]}" if clause_matches else ""
    
    return f"({page_ref}, {clause_ref})".strip(", ")

def refine_answer_based_on_question(question: str, answer: str) -> str:
    if "Does the agreement contain" in question:
        if "not" in answer or "No" in answer:
            refined_answer = f"No, the agreement does not contain {answer}"
        else:
            refined_answer = f"Yes, the agreement contains {answer}"
    else:
        refined_answer = answer

    return refined_answer

def answer_query_with_context(question: str, df: pd.DataFrame, tokenizer, model, top_n_paragraphs: int = 5) -> str:
    question_words = set(question.split())
    
    priority_keywords = ["duration", "term", "period", "month", "year", "day", "week", "agreement", "obligation", "effective date"]
    
    df['relevance_score'] = df['content'].apply(lambda x: len(question_words.intersection(set(x.split()))) + sum([x.lower().count(pk) for pk in priority_keywords]))
    
    most_relevant_paragraphs = df.sort_values(by='relevance_score', ascending=False).iloc[:top_n_paragraphs]['content'].tolist()
    
    context = "\n\n".join(most_relevant_paragraphs)
    prompt = f"Question: {question}\n\nContext: {context}\n\nAnswer:"
    
    inputs = tokenizer.encode(prompt, return_tensors="pt", max_length=512, truncation=True)
    outputs = model.generate(inputs, max_length=600)
    answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
    
    references = extract_page_and_clause_references(context)
    answer = refine_answer_based_on_question(question, answer) + " " + references
    
    return answer

def get_embedding(text, tokenizer):
    try:
        inputs = tokenizer(text, return_tensors="pt", max_length=512, truncation=True)
        outputs = model(**inputs)
        embedding = outputs.last_hidden_state
    except Exception as e:
        print("Error obtaining embedding:", e)
        embedding = []
    return embedding

def save_as_pdf(conversation):
    pdf_filename = "conversation.pdf"
    c = canvas.Canvas(pdf_filename, pagesize=letter)
   
    c.drawString(100, 750, "Conversation:")
    y_position = 730
    for q, a in conversation:
        c.drawString(120, y_position, f"Q: {q}")
        c.drawString(120, y_position - 20, f"A: {a}")
        y_position -= 40
   
    c.save()
   
    st.markdown(f"Download [PDF](./{pdf_filename})")

def save_as_docx(conversation):
    doc = Document()
    doc.add_heading('Conversation', 0)
   
    for q, a in conversation:
        doc.add_paragraph(f'Q: {q}')
        doc.add_paragraph(f'A: {a}')
   
    doc_filename = "conversation.docx"
    doc.save(doc_filename)
   
    st.markdown(f"Download [DOCX](./{doc_filename})")

def save_as_xlsx(conversation):
    df = pd.DataFrame(conversation, columns=["Question", "Answer"])
    xlsx_filename = "conversation.xlsx"
    df.to_excel(xlsx_filename, index=False)
   
    st.markdown(f"Download [XLSX](./{xlsx_filename})")

def save_as_txt(conversation):
    txt_filename = "conversation.txt"
    with open(txt_filename, "w") as txt_file:
        for q, a in conversation:
            txt_file.write(f"Q: {q}\nA: {a}\n\n")
   
    st.markdown(f"Download [TXT](./{txt_filename})")

def main():
    st.markdown('<h1>Ask anything from Legal Texts</h1><p style="font-size: 12; color: gray;"></p>', unsafe_allow_html=True)
    st.markdown("<h2>Upload documents</h2>", unsafe_allow_html=True)
    
    uploaded_files = st.file_uploader("Upload one or more documents", type=['pdf', 'docx'], accept_multiple_files=True)
    question = st.text_input("Ask a question based on the documents", key="question_input")

    progress = st.progress(0)
    for i in range(100):
        progress.progress(i + 1)
        time.sleep(0.01)

    if uploaded_files:
        df = pd.DataFrame(columns=["page_num", "paragraph_num", "content", "tokens"])
        for uploaded_file in uploaded_files:
            paragraphs = read_pdf_pdfminer(uploaded_file) if uploaded_file.type == "application/pdf" else read_docx(uploaded_file)
            temp_df = pd.DataFrame(
                [(p.page_num, p.paragraph_num, p.content, count_tokens(p.content, tokenizer))
                for p in paragraphs],
                columns=["page_num", "paragraph_num", "content", "tokens"]
            )
            df = pd.concat([df, temp_df], ignore_index=True)

        if "interactions" not in st.session_state:
            st.session_state["interactions"] = []

        answer = ""
        if question != st.session_state.get("last_question", ""):
            st.text("Searching...")
            answer = answer_query_with_context(question, df, tokenizer, model)
            st.session_state["interactions"].append((question, answer))
            st.write(answer)

        st.markdown("### Interaction History")
        for q, a in st.session_state["interactions"]:
            st.write(f"**Q:** {q}\n\n**A:** {a}")

        st.session_state["last_question"] = question

        st.markdown("<h2>Sample paragraphs</h2>", unsafe_allow_html=True)
        sample_size = min(len(df), 5)
        st.dataframe(df.sample(n=sample_size))  

        if st.button("Save as PDF"):
            save_as_pdf(st.session_state["interactions"])
        if st.button("Save as DOCX"):
            save_as_docx(st.session_state["interactions"])
        if st.button("Save as XLSX"):
            save_as_xlsx(st.session_state["interactions"])
        if st.button("Save as TXT"):
            save_as_txt(st.session_state["interactions"])


    else:
        st.markdown("<h2>Please upload a document to proceed.</h2>", unsafe_allow_html=True)

if __name__ == "__main__":
    main()