File size: 4,668 Bytes
c00ccba
 
88b47df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cd32cd
 
 
 
 
27bf09a
 
0cd32cd
 
 
 
 
 
0a57d81
88b47df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af75af6
88b47df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#import json
import os
#import shutil
#import requests

import gradio as gr

from transformers.utils import logging
from langchain.embeddings import HuggingFaceInstructEmbeddings, GooglePalmEmbeddings
import pinecone
from langchain.vectorstores import Pinecone

logging.set_verbosity_debug()

instructor_embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl", model_kwargs={"device": "cpu"})

HF_TOKEN = os.environ.get("HF_TOKEN", None)
PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY", None)
PINECONE_ENV = os.environ.get("PINECONE_ENV", None)
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY", None)

pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_ENV)

from langchain.llms import GooglePalm
from langchain.chains import RetrievalQAWithSourcesChain
llm=GooglePalm(google_api_key=GOOGLE_API_KEY, temperature=1, max_output_tokens=2048)
vectorStore = Pinecone.from_existing_index('tennis', instructor_embeddings)
retriever = vectorStore.as_retriever(search_kwargs={"k": 3})
qa_chain_instrucEmbed = RetrievalQAWithSourcesChain.from_chain_type(llm=llm,
                                  chain_type="stuff",
                                  retriever=retriever,
                                  return_source_documents=True,
                                  verbose=True
                                  )

theme = gr.themes.Monochrome(
    primary_hue="indigo",
    secondary_hue="blue",
    neutral_hue="slate",
    radius_size=gr.themes.sizes.radius_sm,
    font=[
        gr.themes.GoogleFont("Open Sans"),
        "ui-sans-serif",
        "system-ui",
        "sans-serif",
    ],
)

def generate(question):
    ret = qa_chain_instrucEmbed(question)
    print(str(ret))
    answer = ret['answer']
    sources = ret['sources']
    embed_video_html = ''
    if sources is not None and len(sources) > 0:
        sources = [s.strip() for s in sources.split(',')]
        for source in sources:
            embed_video_html += f'''
                <iframe width="560" height="315" src="https://www.youtube.com/embed/{source}"
                title="YouTube video player" frameborder="0" allow="accelerometer; autoplay;
                clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
                '''
    return answer, embed_video_html

examples = [
    "Tell me step by step how to find out my dominant eye when I play tennis.",
    "hat do we look for in a great tennis player? Write out the essential attributes."
]

def process_example(args):
    for x in generate(args):
        pass
    return x


css = ".generating {visibility: hidden}"

monospace_css = """
#q-input textarea {
    font-family: monospace, 'Consolas', Courier, monospace;
}
"""

css += monospace_css + ".gradio-container {color: black}"

description = """
<div style="text-align: center;">
    <h1>Ask Coach Patrick Mouratoglou</h1>
</div>
<div style="text-align: left;">
    <p>This is a demo to answer some popular questions from tennis fans to Coach Patrick. The information is being extracted from his official <a href="https://www.youtube.com/@patrickmouratoglou_official" style='color: #e6b800;'>Youtube channel</a>. It's using the following technologies:</p>
    <ul>
        <li>Google PALM</li>
        <li>Gradio</li>
        <li>hkunlp/instructor-xl</li>
        <li>HuggingFace</li>
        <li>Langchain</li>
        <li>Pinecone</li>
    </ul>
</div>
"""
disclaimer = """⚠️<b>This is an unofficial website.</b>\
 <br>**Intended Use**: this app for demonstration purposes; not to serve as replacement for Coach Patrick official media channels or personal expertise."""

with gr.Blocks(theme=theme, analytics_enabled=False, css=css) as demo:
    with gr.Column():
        gr.Markdown(description)
        gr.Markdown(disclaimer)
        with gr.Row():
            with gr.Column():
                instruction = gr.Textbox(
                    placeholder="Enter your question here",
                    lines=5,
                    label="Input",
                    elem_id="q-input",
                )
                submit = gr.Button("Ask", variant="primary")
                output = gr.Code(elem_id="q-output", lines=10, label="Output")
                video = gr.HTML('')
                gr.Examples(
                    examples=examples,
                    inputs=[instruction],
                    cache_examples=False,
                    fn=process_example,
                    outputs=[output, video],
                )

    submit.click(
        generate,
        inputs=[instruction],
        outputs=[output, video],
    )
demo.queue(concurrency_count=16).launch(debug=True)