File size: 6,998 Bytes
4f619cd
 
 
 
 
 
 
 
 
 
 
 
 
 
afa4646
4f619cd
 
 
 
 
 
 
 
1c1f6e1
4f619cd
 
 
 
 
 
 
 
 
 
 
a7fefdc
4f619cd
 
 
26b6838
4f619cd
 
 
 
 
 
 
 
 
13fb865
4f619cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c6e7dc
4f619cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41450b9
4f619cd
 
 
 
b4f833e
4f619cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afa4646
4f619cd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# ------------------------------------------------------------------------------
# Copyright (c) 2023, Alaa lab, UC Berkeley. All rights reserved.
#
# Written by Yulu Gan.
# ------------------------------------------------------------------------------

from __future__ import annotations

import math
import cv2
import random
from fnmatch import fnmatch
import numpy as np

import gradio as gr
import torch
from PIL import Image, ImageOps
from diffusers import StableDiffusionInstructPix2PixPipeline

title = "InstructCV"

description = """
<p style='text-align: center'> <a href='https://huggingface.co/spaces/yulu2/InstructCV/' target='_blank'>Project Page</a> | <a href='https://arxiv.org' target='_blank'>Paper</a> | <a href='https://github.com' target='_blank'>Code</a></p>
Gradio demo for InstructCV: Instruction-Tuned Text-to-Image Diffusion Models As Vision Generalists. \n
You may upload any images you like and try to let the model do vision tasks following your intent. \n
Some examples: You could use "Segment the dog" for segmentation, "Detect the dog" for object detection, "Estimate the depth map of this image" for depth estimation, etc.
"""  # noqa


example_instructions = [
                        "Please help me detect Buzz.",
                        "Please help me detect Woody's face.",
                        "Create a monocular depth map.",
]

model_id = "alaa-lab/InstructCV"

def main():
    # pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None).to("cpu")
    pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, safety_checker=None).to("cuda")
    example_image = Image.open("imgs/example2.jpg").convert("RGB")
    

    def load_example(seed: int, randomize_seed:bool):
        example_instruction = random.choice(example_instructions)
        return [example_image, example_instruction] + generate(
            example_image,
            example_instruction,
            seed,
            0,
        )

    def generate(
        input_image: Image.Image,
        instruction: str,
        seed: int,
        randomize_seed:bool,
    ):
        seed = random.randint(0, 100000) if randomize_seed else seed
        width, height = input_image.size
        factor = 512 / max(width, height)
        factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
        width = int((width * factor) // 64) * 64
        height = int((height * factor) // 64) * 64
        input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)
        
        if instruction == "":
            return [input_image]

        generator = torch.manual_seed(seed)
        edited_image = pipe(
            instruction, image=input_image,
            guidance_scale=7.5, image_guidance_scale=1.5,
            num_inference_steps=50, generator=generator,
        ).images[0]
        instruction_ = instruction.lower()
        
        if fnmatch(instruction_, "*segment*") or fnmatch(instruction_, "*split*") or fnmatch(instruction_, "*divide*"):
            input_image  = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR) #numpy.ndarray
            edited_image = cv2.cvtColor(np.array(edited_image), cv2.COLOR_RGB2GRAY)
            ret, thresh  = cv2.threshold(edited_image, 127, 255, cv2.THRESH_BINARY)
            img2         = input_image.copy()
            seed_seg     = np.random.randint(0,10000)
            np.random.seed(seed_seg)
            colors       = np.random.randint(0,255,(3))
            colors2      = np.random.randint(0,255,(3))
            contours,_   = cv2.findContours(thresh,cv2.RETR_LIST,cv2.CHAIN_APPROX_NONE)
            edited_image = cv2.drawContours(input_image,contours,-1,(int(colors[0]),int(colors[1]),int(colors[2])),3)
            for j in range(len(contours)):
                edited_image_2 = cv2.fillPoly(img2, [contours[j]], (int(colors2[0]),int(colors2[1]),int(colors2[2])))
            img_merge = cv2.addWeighted(edited_image, 0.5,edited_image_2, 0.5, 0)
            edited_image  = Image.fromarray(cv2.cvtColor(img_merge, cv2.COLOR_BGR2RGB))
        
        if fnmatch(instruction_, "*depth*"):
            edited_image = cv2.cvtColor(np.array(edited_image), cv2.COLOR_RGB2GRAY)
            n_min    = np.min(edited_image)
            n_max    = np.max(edited_image)
    
            edited_image = (edited_image-n_min)/(n_max-n_min+1e-8)
            edited_image = (255*edited_image).astype(np.uint8)
            edited_image = cv2.applyColorMap(edited_image, cv2.COLORMAP_JET)
            edited_image = Image.fromarray(cv2.cvtColor(edited_image, cv2.COLOR_BGR2RGB))

        text_cfg_scale   = 7.5
        image_cfg_scale  = 1.5
        return [seed, text_cfg_scale, image_cfg_scale, edited_image]


    with gr.Blocks() as demo:
#         gr.HTML("""<h1 style="font-weight: 900; margin-bottom: 7px;">
#    InstructCV: Towards Universal Text-to-Image Vision Generalists
# </h1>""")
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>" + title + "</h1>")
        gr.Markdown(description)
        with gr.Row():
            with gr.Column(scale=1.5, min_width=100):
                generate_button = gr.Button("Generate result")
            with gr.Column(scale=1.5, min_width=100):
                load_button = gr.Button("Load example")
            with gr.Column(scale=3):
                instruction = gr.Textbox(lines=1, label="Instruction", interactive=True)

        with gr.Row():
            input_image = gr.Image(label="Input Image", type="pil", interactive=True)
            edited_image = gr.Image(label=f"Output Image", type="pil", interactive=False)
            input_image.style(height=512, width=512)
            edited_image.style(height=512, width=512)
        
        with gr.Row(): 
            randomize_seed = gr.Radio(
                ["Fix Seed", "Randomize Seed"],
                value="Randomize Seed",
                type="index",
                show_label=False,
                interactive=True,
            )
            
            seed = gr.Number(value=90, precision=0, label="Seed", interactive=True)
            text_cfg_scale = gr.Number(value=7.5, label=f"Text weight", interactive=False)
            image_cfg_scale = gr.Number(value=1.5, label=f"Image weight", interactive=False)


        # gr.Markdown(Intro_text)
        
        load_button.click(
            fn=load_example,
            inputs=[seed, randomize_seed],
            outputs=[input_image, instruction, seed, text_cfg_scale, image_cfg_scale, edited_image],
        )
        generate_button.click(
            fn=generate,
            inputs=[
                input_image,
                instruction,
                seed,
                randomize_seed,
            ],
            outputs=[seed, text_cfg_scale, image_cfg_scale, edited_image],
        )

    demo.queue(concurrency_count=1)
    demo.launch(share=False)


if __name__ == "__main__":
    main()