Spaces:
Build error
Build error
File size: 11,870 Bytes
c9b1ba4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import speech_recognition as sr
from sentiment import analyze_sentiment
from recommendations import ProductRecommender
from objection_handling import ObjectionHandler
from sheets import fetch_call_data, store_data_in_sheet
from sentence_transformers import SentenceTransformer
from setup import config
import re
import uuid
from google.oauth2 import service_account
from googleapiclient.discovery import build
import pandas as pd
import plotly.express as px
import plotly.graph_objs as go
import streamlit as st
# Initialize components
product_recommender = ProductRecommender(r"C:\Users\Gowri Shankar\Downloads\AI-Sales-Call-Assistant--main\Sales_Calls_Transcriptions_Sheet2.csv")
objection_handler = ObjectionHandler(r"C:\Users\Gowri Shankar\Downloads\AI-Sales-Call-Assistant--main\Sales_Calls_Transcriptions_Sheet3.csv")
model = SentenceTransformer('all-MiniLM-L6-v2')
def generate_comprehensive_summary(chunks):
"""
Generate a comprehensive summary from conversation chunks
"""
# Extract full text from chunks
full_text = " ".join([chunk[0] for chunk in chunks])
# Perform basic analysis
total_chunks = len(chunks)
sentiments = [chunk[1] for chunk in chunks]
# Determine overall conversation context
context_keywords = {
'product_inquiry': ['dress', 'product', 'price', 'stock'],
'pricing': ['cost', 'price', 'budget'],
'negotiation': ['installment', 'payment', 'manage']
}
# Detect conversation themes
themes = []
for keyword_type, keywords in context_keywords.items():
if any(keyword.lower() in full_text.lower() for keyword in keywords):
themes.append(keyword_type)
# Basic sentiment analysis
positive_count = sentiments.count('POSITIVE')
negative_count = sentiments.count('NEGATIVE')
neutral_count = sentiments.count('NEUTRAL')
# Key interaction highlights
key_interactions = []
for chunk in chunks:
if any(keyword.lower() in chunk[0].lower() for keyword in ['price', 'dress', 'stock', 'installment']):
key_interactions.append(chunk[0])
# Construct summary
summary = f"Conversation Summary:\n"
# Context and themes
if 'product_inquiry' in themes:
summary += "• Customer initiated a product inquiry about items.\n"
if 'pricing' in themes:
summary += "• Price and budget considerations were discussed.\n"
if 'negotiation' in themes:
summary += "• Customer and seller explored flexible payment options.\n"
# Sentiment insights
summary += f"\nConversation Sentiment:\n"
summary += f"• Positive Interactions: {positive_count}\n"
summary += f"• Negative Interactions: {negative_count}\n"
summary += f"• Neutral Interactions: {neutral_count}\n"
# Key highlights
summary += "\nKey Conversation Points:\n"
for interaction in key_interactions[:3]: # Limit to top 3 key points
summary += f"• {interaction}\n"
# Conversation outcome
if positive_count > negative_count:
summary += "\nOutcome: Constructive and potentially successful interaction."
elif negative_count > positive_count:
summary += "\nOutcome: Interaction may require further follow-up."
else:
summary += "\nOutcome: Neutral interaction with potential for future engagement."
return summary
def is_valid_input(text):
text = text.strip().lower()
if len(text) < 3 or re.match(r'^[a-zA-Z\s]*$', text) is None:
return False
return True
def is_relevant_sentiment(sentiment_score):
return sentiment_score > 0.4
def calculate_overall_sentiment(sentiment_scores):
if sentiment_scores:
average_sentiment = sum(sentiment_scores) / len(sentiment_scores)
overall_sentiment = (
"POSITIVE" if average_sentiment > 0 else
"NEGATIVE" if average_sentiment < 0 else
"NEUTRAL"
)
else:
overall_sentiment = "NEUTRAL"
return overall_sentiment
def real_time_analysis():
recognizer = sr.Recognizer()
mic = sr.Microphone()
st.info("Say 'stop' to end the process.")
sentiment_scores = []
transcribed_chunks = []
total_text = ""
try:
while True:
with mic as source:
st.write("Listening...")
recognizer.adjust_for_ambient_noise(source)
audio = recognizer.listen(source)
try:
st.write("Recognizing...")
text = recognizer.recognize_google(audio)
st.write(f"*Recognized Text:* {text}")
if 'stop' in text.lower():
st.write("Stopping real-time analysis...")
break
# Append to the total conversation
total_text += text + " "
sentiment, score = analyze_sentiment(text)
sentiment_scores.append(score)
# Handle objection
objection_response = handle_objection(text)
# Get product recommendation
recommendations = []
if is_valid_input(text) and is_relevant_sentiment(score):
query_embedding = model.encode([text])
distances, indices = product_recommender.index.search(query_embedding, 1)
if distances[0][0] < 1.5: # Similarity threshold
recommendations = product_recommender.get_recommendations(text)
transcribed_chunks.append((text, sentiment, score))
st.write(f"*Sentiment:* {sentiment} (Score: {score})")
st.write(f"*Objection Response:* {objection_response}")
if recommendations:
st.write("*Product Recommendations:*")
for rec in recommendations:
st.write(rec)
except sr.UnknownValueError:
st.error("Speech Recognition could not understand the audio.")
except sr.RequestError as e:
st.error(f"Error with the Speech Recognition service: {e}")
except Exception as e:
st.error(f"Error during processing: {e}")
# After conversation ends, calculate and display overall sentiment and summary
overall_sentiment = calculate_overall_sentiment(sentiment_scores)
call_summary = generate_comprehensive_summary(transcribed_chunks)
st.subheader("Conversation Summary:")
st.write(total_text.strip())
st.subheader("Overall Sentiment:")
st.write(overall_sentiment)
# Store data in Google Sheets
store_data_in_sheet(
config["google_sheet_id"],
transcribed_chunks,
call_summary,
overall_sentiment
)
st.success("Conversation data stored successfully in Google Sheets!")
except Exception as e:
st.error(f"Error in real-time analysis: {e}")
def handle_objection(text):
query_embedding = model.encode([text])
distances, indices = objection_handler.index.search(query_embedding, 1)
if distances[0][0] < 1.5: # Adjust similarity threshold as needed
responses = objection_handler.handle_objection(text)
return "\n".join(responses) if responses else "No objection response found."
return "No objection response found."
# (Previous imports remain the same)
def run_app():
st.set_page_config(page_title="Vocalytics", layout="wide")
st.title("AI Sales Call Assistant")
st.sidebar.title("Navigation")
app_mode = st.sidebar.radio("Menu", ["Home","Real-Time Recommendations", "Analysis", "Full Call Summary"])
if app_mode == "Home":
st.title("Welcome to the AI Sales Assistant Dashboard!")
st.markdown("""
### Features:
- Real-Time Transcription: Live transcription with sentiment analysis.
- Product Recommendations: Relevant suggestions based on customer conversations.
- Objection Handling: Automatic detection and response to objections.
- Data Summary: Historical insights stored in Google Sheets.
- Analytics: Visualize trends and sentiment distribution.
""")
elif app_mode == "Real-Time Recommendations":
st.header("Real-Time Recommendations ")
if st.button("Start Listening"):
real_time_analysis()
elif app_mode == "Analysis":
st.header("Call Summary and Analysis")
try:
data = fetch_call_data(config["google_sheet_id"])
if data.empty:
st.warning("No data available in the Google Sheet.")
else:
# Sentiment Visualizations
sentiment_counts = data['Sentiment'].value_counts()
# Pie Chart
col1, col2 = st.columns(2)
with col1:
st.subheader("Sentiment Distribution")
fig_pie = px.pie(
values=sentiment_counts.values,
names=sentiment_counts.index,
title='Call Sentiment Breakdown',
color_discrete_map={
'POSITIVE': 'green',
'NEGATIVE': 'red',
'NEUTRAL': 'pink'
}
)
st.plotly_chart(fig_pie)
# Line Chart for Sentiment Over Time
with col2:
st.subheader("Sentiment Over Time")
if 'Sentiment' in data.columns:
data['Index'] = range(1, len(data) + 1) # Generate indices as time proxy
fig_line = px.line(
data,
x='Index',
y='Sentiment',
title='Sentiment Trend During Calls',
markers=True,
labels={'Index': 'Call Progress (Sequential)', 'Sentiment': 'Sentiment'}
)
st.plotly_chart(fig_line)
else:
st.warning("Sentiment data is not available for trend visualization.")
# Existing Call Details Section
st.subheader("All Calls")
display_data = data.copy()
display_data['Summary Preview'] = display_data['Summary'].str[:100] + '...'
st.dataframe(display_data[['Chunk', 'Sentiment', 'Summary Preview', 'Overall Sentiment']])
except Exception as e:
st.error(f"Error loading dashboard: {e}")
elif app_mode == "Full Call Summary":
st.header("Full Call Summary")
try:
data = fetch_call_data(config["google_sheet_id"])
if data.empty:
st.warning("No data available in the Google Sheet.")
else:
data = data.dropna(subset=['Chunk', 'Summary'])
for index, row in data.iterrows():
st.text_area(
label=f"Call Summary {index+1}",
value=row['Summary'],
height=200,
key=f"summary_{index}"
)
except Exception as e:
st.error(f"Error loading full call summary: {e}")
if __name__ == "__main__":
run_app()
|