File size: 8,931 Bytes
85b5a6b
 
 
35bc796
fd83866
85b5a6b
 
 
 
1c96585
85b5a6b
 
 
 
 
 
 
 
 
1c96585
85b5a6b
1c96585
85b5a6b
 
 
 
 
 
 
1c96585
85b5a6b
 
4ac7833
1c96585
85b5a6b
 
 
 
 
 
4ac7833
85b5a6b
4ac7833
85b5a6b
4ac7833
85b5a6b
 
 
 
 
 
4ac7833
85b5a6b
 
 
4ac7833
85b5a6b
 
 
 
 
1c96585
 
 
 
 
 
 
 
 
85b5a6b
1c96585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85b5a6b
1c96585
85b5a6b
 
 
 
 
1c96585
85b5a6b
 
 
 
 
4ac7833
1c96585
 
 
85b5a6b
 
 
 
1c96585
 
 
85b5a6b
1c96585
 
 
85b5a6b
1c96585
 
 
4ac7833
85b5a6b
 
1c96585
 
 
 
 
 
4ac7833
85b5a6b
4ac7833
85b5a6b
 
 
 
 
 
4ac7833
 
1c96585
4ac7833
85b5a6b
4ac7833
 
 
85b5a6b
4ac7833
85b5a6b
 
4ac7833
85b5a6b
1c96585
 
 
 
 
5546741
 
 
 
 
 
 
50da102
5546741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c96585
 
 
 
 
 
 
 
 
5546741
1c96585
5546741
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
import cv2
import yaml
import tarfile
import tempfile
import numpy as np
import warnings
from skimage import img_as_ubyte
import safetensors
import safetensors.torch
warnings.filterwarnings('ignore')

import imageio
import torch
import torchvision

from src.facerender.modules.keypoint_detector import HEEstimator, KPDetector
from src.facerender.modules.mapping import MappingNet
from src.facerender.modules.generator import OcclusionAwareGenerator, OcclusionAwareSPADEGenerator
from src.facerender.modules.make_animation import make_animation

from pydub import AudioSegment
from src.utils.face_enhancer import enhancer_generator_with_len, enhancer_list
from src.utils.paste_pic import paste_pic
from src.utils.videoio import save_video_with_watermark

try:
    import webui  # in webui
    in_webui = True
except ImportError:
    in_webui = False


class AnimateFromCoeff:

    def __init__(self, sadtalker_path, device):
        with open(sadtalker_path['facerender_yaml']) as f:
            config = yaml.safe_load(f)

        generator = OcclusionAwareSPADEGenerator(**config['model_params']['generator_params'],
                                                 **config['model_params']['common_params'])
        kp_extractor = KPDetector(**config['model_params']['kp_detector_params'],
                                  **config['model_params']['common_params'])
        he_estimator = HEEstimator(**config['model_params']['he_estimator_params'],
                                   **config['model_params']['common_params'])
        mapping = MappingNet(**config['model_params']['mapping_params'])

        generator.to(device)
        kp_extractor.to(device)
        he_estimator.to(device)
        mapping.to(device)

        for param in generator.parameters():
            param.requires_grad = False
        for param in kp_extractor.parameters():
            param.requires_grad = False
        for param in he_estimator.parameters():
            param.requires_grad = False
        for param in mapping.parameters():
            param.requires_grad = False

        # FaceVid2Vid checkpoint yükleme
        if 'checkpoint' in sadtalker_path:
            self.load_cpk_facevid2vid_safetensor(
                sadtalker_path['checkpoint'],
                kp_detector=kp_extractor,
                generator=generator,
                he_estimator=None,
                device=device
            )
        else:
            self.load_cpk_facevid2vid(
                sadtalker_path['free_view_checkpoint'],
                kp_detector=kp_extractor,
                generator=generator,
                he_estimator=he_estimator,
                device=device
            )

        # MappingNet checkpoint yükleme
        if sadtalker_path.get('mappingnet_checkpoint') is not None:
            self.load_cpk_mapping(
                sadtalker_path['mappingnet_checkpoint'],
                mapping=mapping,
                device=device
            )
        else:
            raise AttributeError("mappingnet_checkpoint path belirtmelisiniz.")

        self.kp_extractor = kp_extractor
        self.generator = generator
        self.he_estimator = he_estimator
        self.mapping = mapping
        self.device = device

        self.kp_extractor.eval()
        self.generator.eval()
        self.he_estimator.eval()
        self.mapping.eval()

    def load_cpk_facevid2vid_safetensor(self, checkpoint_path,
                                        generator=None, kp_detector=None,
                                        he_estimator=None, device="cpu"):

        checkpoint = safetensors.torch.load_file(checkpoint_path)

        if generator is not None:
            state = {k.replace('generator.', ''): v
                     for k, v in checkpoint.items() if k.startswith('generator.')}
            generator.load_state_dict(state)
        if kp_detector is not None:
            state = {k.replace('kp_extractor.', ''): v
                     for k, v in checkpoint.items() if k.startswith('kp_extractor.')}
            kp_detector.load_state_dict(state)
        if he_estimator is not None:
            state = {k.replace('he_estimator.', ''): v
                     for k, v in checkpoint.items() if k.startswith('he_estimator.')}
            he_estimator.load_state_dict(state)

        return None

    def load_cpk_facevid2vid(self, checkpoint_path,
                              generator=None, discriminator=None,
                              kp_detector=None, he_estimator=None,
                              optimizer_generator=None, optimizer_discriminator=None,
                              optimizer_kp_detector=None, optimizer_he_estimator=None,
                              device="cpu"):

        checkpoint = torch.load(checkpoint_path, map_location=torch.device(device))

        if generator is not None:
            generator.load_state_dict(checkpoint['generator'])
        if kp_detector is not None:
            kp_detector.load_state_dict(checkpoint['kp_detector'])
        if he_estimator is not None:
            he_estimator.load_state_dict(checkpoint['he_estimator'])
        if discriminator is not None and 'discriminator' in checkpoint:
            discriminator.load_state_dict(checkpoint['discriminator'])
        # Optimizeler varsa yükle
        if optimizer_generator is not None and 'optimizer_generator' in checkpoint:
            optimizer_generator.load_state_dict(checkpoint['optimizer_generator'])
        if optimizer_discriminator is not None and 'optimizer_discriminator' in checkpoint:
            optimizer_discriminator.load_state_dict(checkpoint['optimizer_discriminator'])
        if optimizer_kp_detector is not None and 'optimizer_kp_detector' in checkpoint:
            optimizer_kp_detector.load_state_dict(checkpoint['optimizer_kp_detector'])
        if optimizer_he_estimator is not None and 'optimizer_he_estimator' in checkpoint:
            optimizer_he_estimator.load_state_dict(checkpoint['optimizer_he_estimator'])

        return checkpoint.get('epoch', 0)

    def load_cpk_mapping(self, checkpoint_path,
                         mapping=None, discriminator=None,
                         optimizer_mapping=None, optimizer_discriminator=None,
                         device='cpu'):

           def load_cpk_mapping(self,
                         checkpoint_path,
                         mapping=None,
                         discriminator=None,
                         optimizer_mapping=None,
                         optimizer_discriminator=None,
                         device='cpu'):
       

        # 1) Eğer .tar veya .pth.tar ile bitiyorsa:
        if checkpoint_path.endswith('.tar') or checkpoint_path.endswith('.pth.tar'):
            tmpdir = tempfile.mkdtemp()
            with tarfile.open(checkpoint_path, 'r') as tar:
                tar.extractall(path=tmpdir)

            # 1.a) Önce .pth arıyoruz, bulamazsak .pkl
            candidate_pth = None
            candidate_pkl = None
            for root, _, files in os.walk(tmpdir):
                for f in files:
                    if f.endswith('.pth') and candidate_pth is None:
                        candidate_pth = os.path.join(root, f)
                    if f.endswith('.pkl') and candidate_pkl is None:
                        candidate_pkl = os.path.join(root, f)
                if candidate_pth:
                    break

            if candidate_pth:
                checkpoint_path = candidate_pth
            elif candidate_pkl:
                checkpoint_path = candidate_pkl
            else:
                raise FileNotFoundError(
                    f"{checkpoint_path} içinden ne .pth ne de .pkl dosyası bulunabildi."
                )

        # 2) Eğer checkpoint_path bir klasörse, archive/data.pkl’e bak
        if os.path.isdir(checkpoint_path):
            possible = os.path.join(checkpoint_path, 'archive', 'data.pkl')
            if os.path.isfile(possible):
                checkpoint_path = possible

        # 3) Torch ile gerçek dosyayı yükle
        checkpoint = torch.load(checkpoint_path,
                                map_location=torch.device(device))

        # 4) State dict’leri ilgili modellere ata
        if mapping is not None and 'mapping' in checkpoint:
            mapping.load_state_dict(checkpoint['mapping'])
        if discriminator is not None and 'discriminator' in checkpoint:
            discriminator.load_state_dict(checkpoint['discriminator'])
        if optimizer_mapping is not None and 'optimizer_mapping' in checkpoint:
            optimizer_mapping.load_state_dict(checkpoint['optimizer_mapping'])
        if optimizer_discriminator is not None and 'optimizer_discriminator' in checkpoint:
            optimizer_discriminator.load_state_dict(checkpoint['optimizer_discriminator'])

        # 5) Epoch bilgisi varsa dön, yoksa 0
        return checkpoint.get('epoch', 0)