File size: 30,646 Bytes
252375c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "%%capture --no-stderr\n",
    "%pip install -U tavily-python langchain_community"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "True"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import os\n",
    "from dotenv import load_dotenv\n",
    "\n",
    "load_dotenv()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "openai_api_key = os.getenv(\"OPENAI_API_KEY\")\n",
    "model = os.getenv(\"OPENAI_MODEL\", \"gpt-4o\")\n",
    "temperature = float(os.getenv(\"OPENAI_TEMPERATURE\", 0))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_community.tools.tavily_search import TavilySearchResults\n",
    "\n",
    "tool = TavilySearchResults(max_results=2)\n",
    "tools = [tool]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "from typing import Annotated\n",
    "from langchain_openai import ChatOpenAI as Chat\n",
    "\n",
    "from langchain_community.tools.tavily_search import TavilySearchResults\n",
    "from typing_extensions import TypedDict\n",
    "\n",
    "from langgraph.checkpoint.memory import MemorySaver\n",
    "from langgraph.graph import StateGraph, START\n",
    "from langgraph.graph.message import add_messages\n",
    "from langgraph.prebuilt import ToolNode, tools_condition\n",
    "\n",
    "memory = MemorySaver()\n",
    "\n",
    "\n",
    "class State(TypedDict):\n",
    "    messages: Annotated[list, add_messages]\n",
    "\n",
    "\n",
    "graph_builder = StateGraph(State)\n",
    "\n",
    "\n",
    "tool = TavilySearchResults(max_results=2)\n",
    "tools = [tool]\n",
    "llm = Chat(\n",
    "    openai_api_key=openai_api_key,\n",
    "    model=model,\n",
    "    temperature=temperature\n",
    ")\n",
    "llm_with_tools = llm.bind_tools(tools)\n",
    "\n",
    "\n",
    "def chatbot(state: State):\n",
    "    return {\"messages\": [llm_with_tools.invoke(state[\"messages\"])]}\n",
    "\n",
    "\n",
    "graph_builder.add_node(\"chatbot\", chatbot)\n",
    "\n",
    "tool_node = ToolNode(tools=[tool])\n",
    "graph_builder.add_node(\"tools\", tool_node)\n",
    "\n",
    "graph_builder.add_conditional_edges(\n",
    "    \"chatbot\",\n",
    "    tools_condition,\n",
    ")\n",
    "graph_builder.add_edge(\"tools\", \"chatbot\")\n",
    "graph_builder.add_edge(START, \"chatbot\")\n",
    "memory = MemorySaver()\n",
    "graph = graph_builder.compile(\n",
    "    checkpointer=memory,\n",
    "    # This is new!\n",
    "    interrupt_before=[\"tools\"],\n",
    "    # Note: can also interrupt **after** actions, if desired.\n",
    "    # interrupt_after=[\"tools\"]\n",
    ")\n",
    "\n",
    "user_input = \"I'm learning LangGraph. Could you do some research on it for me?\"\n",
    "config = {\"configurable\": {\"thread_id\": \"1\"}}\n",
    "# The config is the **second positional argument** to stream() or invoke()!\n",
    "events = graph.stream({\"messages\": [(\"user\", user_input)]}, config)\n",
    "for event in events:\n",
    "    if \"messages\" in event:\n",
    "        event[\"messages\"][-1].pretty_print()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "==================================\u001b[1m Ai Message \u001b[0m==================================\n",
      "Tool Calls:\n",
      "  tavily_search_results_json (call_LGHiKqqnTR0xCTMQj4iKZ2Uy)\n",
      " Call ID: call_LGHiKqqnTR0xCTMQj4iKZ2Uy\n",
      "  Args:\n",
      "    query: LangGraph programming language\n"
     ]
    }
   ],
   "source": [
    "snapshot = graph.get_state(config)\n",
    "existing_message = snapshot.values[\"messages\"][-1]\n",
    "existing_message.pretty_print()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "==================================\u001b[1m Ai Message \u001b[0m==================================\n",
      "\n",
      "LangGraph is a library for building stateful, multi-actor applications with LLMs.\n",
      "\n",
      "\n",
      "Last 2 messages;\n",
      "[ToolMessage(content='LangGraph is a library for building stateful, multi-actor applications with LLMs.', id='c7ee8f20-19bc-430f-a7ad-4219c25fc6ec', tool_call_id='call_LGHiKqqnTR0xCTMQj4iKZ2Uy'), AIMessage(content='LangGraph is a library for building stateful, multi-actor applications with LLMs.', additional_kwargs={}, response_metadata={}, id='a7973d5c-e60b-4c97-8876-d32b9e280acf')]\n"
     ]
    }
   ],
   "source": [
    "from langchain_core.messages import AIMessage, ToolMessage\n",
    "\n",
    "answer = (\n",
    "    \"LangGraph is a library for building stateful, multi-actor applications with LLMs.\"\n",
    ")\n",
    "new_messages = [\n",
    "    # The LLM API expects some ToolMessage to match its tool call. We'll satisfy that here.\n",
    "    ToolMessage(content=answer,\n",
    "                tool_call_id=existing_message.tool_calls[0][\"id\"]),\n",
    "    # And then directly \"put words in the LLM's mouth\" by populating its response.\n",
    "    AIMessage(content=answer),\n",
    "]\n",
    "\n",
    "new_messages[-1].pretty_print()\n",
    "graph.update_state(\n",
    "    # Which state to update\n",
    "    config,\n",
    "    # The updated values to provide. The messages in our `State` are \"append-only\", meaning this will be appended\n",
    "    # to the existing state. We will review how to update existing messages in the next section!\n",
    "    {\"messages\": new_messages},\n",
    ")\n",
    "\n",
    "print(\"\\n\\nLast 2 messages;\")\n",
    "print(graph.get_state(config).values[\"messages\"][-2:])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "class State(TypedDict):\n",
    "    messages: Annotated[list, add_messages]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'configurable': {'thread_id': '1',\n",
       "  'checkpoint_ns': '',\n",
       "  'checkpoint_id': '1ef97736-c6dd-6e14-8003-b885bde8bfbe'}}"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "graph.update_state(\n",
    "    config,\n",
    "    {\"messages\": [AIMessage(content=\"I'm an AI expert!\")]},\n",
    "    # Which node for this function to act as. It will automatically continue\n",
    "    # processing as if this node just ran.\n",
    "    as_node=\"chatbot\",\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/4gHYSUNDX1BST0ZJTEUAAQEAAAHIAAAAAAQwAABtbnRyUkdCIFhZWiAH4AABAAEAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAAAADTLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkZXNjAAAA8AAAACRyWFlaAAABFAAAABRnWFlaAAABKAAAABRiWFlaAAABPAAAABR3dHB0AAABUAAAABRyVFJDAAABZAAAAChnVFJDAAABZAAAAChiVFJDAAABZAAAAChjcHJ0AAABjAAAADxtbHVjAAAAAAAAAAEAAAAMZW5VUwAAAAgAAAAcAHMAUgBHAEJYWVogAAAAAAAAb6IAADj1AAADkFhZWiAAAAAAAABimQAAt4UAABjaWFlaIAAAAAAAACSgAAAPhAAAts9YWVogAAAAAAAA9tYAAQAAAADTLXBhcmEAAAAAAAQAAAACZmYAAPKnAAANWQAAE9AAAApbAAAAAAAAAABtbHVjAAAAAAAAAAEAAAAMZW5VUwAAACAAAAAcAEcAbwBvAGcAbABlACAASQBuAGMALgAgADIAMAAxADb/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAEjATADASIAAhEBAxEB/8QAHQABAAMBAAMBAQAAAAAAAAAAAAQFBgcCAwgBCf/EAFgQAAEEAQIDAgYMCgYGBwkAAAEAAgMEBQYRBxIhEzEVFiJBVpQIFBc2UVR0k7LR0tQjMjVVYXF1gbTTMzRikaGxJCVzkrPECUJDUlNjciZERleDhJWi4f/EABoBAQEAAwEBAAAAAAAAAAAAAAABAgMEBQb/xAA1EQEAAQIBCAkDBAIDAAAAAAAAAQIRAxIxQVFSYaHRBBQhM3GBkbHBBROSFSIjYiQyouHw/9oADAMBAAIRAxEAPwD+qaIiAiIgIiICIiAiIgIiICIiAirc5mm4avHywvt2539lXqxEB0r/ANZ6AAbkuPQAE/oVT4kxZkdrqWU5qR2x9pv6Uov7LYu54/tScx/UOg3U0RbKrm0cVtrW0upMRA8tkylKNw7w6wwH/NePjVhfzxQ9ZZ9a8ItI4KFgZHhcdGwdzW1IwP8AJefirhfzPQ9WZ9Sy/h38DsPGrC/nih6yz608asL+eKHrLPrTxVwv5noerM+pPFXC/meh6sz6k/h38F7Dxqwv54oess+tPGrC/nih6yz608VcL+Z6HqzPqTxVwv5noerM+pP4d/A7Dxqwv54oess+tecOosVZeGQ5OnK8/wDVZYYT/gV4eKuF/M9D1Zn1Lwl0fgZ28smEx0jd99nVIyP8k/h38DsW6LMeKD8CO201KKJYPyZM9xpS9e7bYmI+YOZ0HeWv22VxhcxFm6XbxxyQPa4xzV5wBJDIPxmOAJG4+EEggggkEE4VUREZVM3j/wBnSyeiItSCIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIMxidsvrbNXHgObihHjYB18hz2MnlPweUHwj/6f61p1mdMt9p6n1ZUcCHS24b7NxsDHJAyMdfP5cEi0y6Mb/aI3R7Qsi9Vq1DSrTWLErIK8LDJJLI4NaxoG5cSe4Add17VAz8NexgsjFapvyNWStI2WnG3mdOwtIdGBuNy4bjbfzrnRyjP+yp0ZDww1frDTtixqJmn6Htw120bUAn5+YQlrnQ9Y3uaR2rQ5gALidgSr2Dj/pGLh9j9XZG1ex+OtytqtbNiLrZnWCznLGQmHtXjYOIcGEENJB6LhOn9P6v1Fw24oaD05itVDQr9JSVcDV1nR9qXKl1zJWCjC9+zpYQwMAc7mDTs0PIWp1VrnUmptA6DOPwmu9O6eiutp6nix+InhzDI2Vd2CFgaZDEZuVr5IhvsDsQNyg6lY9kJw9q6LxurJdTQM0/kLvg6C4YZf6z5f4J7OTmjcOzfuHgbEbHqRvl8v7KjTmO4gaS0/HRzEtHO0bVz267CZBssRilbExnYe1+fynF+7jsGBrSekjSeMaR0JnG4/H036V1NDBHxgr52NmaglsTig+ruyzLKS/fZw8tznEtd0fs5dk4wzZDSXGvh5rRun8znsJTx2UxtvwHRfcnryTe13xOdEzd3KexeOYDYHbfbdB29F4sdzsa4AgEb7EbFeSAsxLtiOINcx7NhzFSQStG/WeHl5HfBuY3vBPf5DB126adZjLj25r7T8DNyalezckO3Ru4ZE0E/Ced+3/oP6N+jBzzE5rT7XjjZYadERc6CIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIKLP4uyLtbM42NsuRqsdE6BzuUWYXEF0e/cHAtBaT0B3HQOcV6rMGnOJun7eMyFOpmsbIWsuYy/CHhrmuDwyWJw6OBDTs4eYH4FolT5nSWLzszbFmB8dxg5WW6sz4J2j4BIwh236N9v0LfFVNURTiaNK+LIM9jfwpicSzhxpdhILd24mAdCNiPxfOCQpGL9j/wzwmSqZHH6A03Sv1JWz17NfFwskikad2va4N3BBAIIVv4kStHLHqbPRtHm9sxu/xdGT/iniTY9Ks989D/AClft4e3wktGtqEWX8SbHpVnvnof5SzvEbDZPS3D3VGao6pzJu47F2rkAmlhLO0jic9vN+DHTcDfqE+3h7fCS0a3SkWNxekbdzGVLEmqs72ksLJHcssO25aCf+yUrxJselWe+eh/lJ9vD2+Elo1qKx7HPhXbsSzz8OtMTTSuL3yPxMBc5xO5JPL1JK8D7GzhO4knhvpYk95OIg+ytB4k2PSrPfPQ/wApBoeQkdrqXPSt335TZYz/ABYwH/FPt4e3wktGtMmu4nROJo46rXZBFDE2vQxVCMc7msAa2OKMbbNaNh5mtHUloBI89PYiepJbyF/s3ZW85pm7IlzImN37OJpPUhoJ67Ddznu2HNsPZhdL4zT7pJKVbaxIOWS1NI6aeQd4DpXkvcN9+hPnKtVjVVTTE00ac8ngIiLSgiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICxnGkgcHNdlxIb4Bv7kfJ3/pH+YWzWM407+45rvbYHwDf/GAI/q7+/fp/f0QaTAfkLHfJo/ohT1AwH5Cx3yaP6IU9AREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBYvjWN+DWvQXBo8AX/KcNwP9Hk6lbRYvjZt7jWvd+g8AX99hv8A+7yebzoNLgPyFjfk0f0Qp6gYD8hY35NH9EKegIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIqvUOejwFSN5ifZszv7GtWj6OmkIJ23PQAAEknuAJ/Qs67PavcSRjsIwH/qm7M7b9/ZDf+5dFGBXiRlRm3zZbNsixHh3WHxDB+tzfy08O6w+IYP1ub+WtnVa9cesFm3Xzh7ODj3Y4IcNBD4rS57H6lr3MTNdZbELaMj4do+ZpjeH8wdIdun9H59+nWPDusPiGD9bm/lrD8a9AZrjjw2y+j8zSwsNa8wGO1HYlc+vK07skaDH3gj94JHnTqteuPWCz89iZx8veyE0FYzkmk36ZxdOVlGrLJeFg3HMb+EcB2bOVrfJG/Xclw6cvXuC5Fwz01nOFWgsHpPDY3CNx+KrNrsc61NzSHvc934P8Zzi5x/SStN4d1h8Qwfrc38tOq1649YLNuixHh3WHxDB+tzfy08O6w+IYP1ub+WnVa9cesFm3RYpmf1cw8z8ZhpWjvYy7K0n9RMR/y+taTBZuDP48WoWviIe6KWCUAPhkadnMcB03BHeCQRsQSCCdWJgV4cZU5t03LLFERaEEREBERAREQEREBERAREQEREBERAREQEREBERAREQYzWx/9qNJjzdtZP7+wd//AFWCr9be+nSX+2s/8EqwXqR3VHh8ys6BEVPqHV2J0rLiI8pb9qvy15mNpDs3v7Ww9r3tZ5IPLu2N53dsOnf1CxRcIii5TK08HjbWRyNqGjQqxOmns2HhkcUbRu5znHoAACSSqJSKkyGtcLi8np/H2bwZbz8j4saxsb3Cw5kTpnbOAIbtGxzt3EA7bDr0V2oCKFmc1Q05ireTylyDH46pGZZ7VmQRxxMHe5zj0AUxrg9ocDuCNwVR+qFw9P8AperB5hl+g/8Ata5/zJU1QeHv9c1d+2P+UrK1d1X4R7wsaWxREXloIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgxmtvfTpL/bWf+CVYKv1t76dJf7az/wAEqwXqR3VHh8ys6HI+Pucykd3QOl8fl7Ona2p857Qu5Wm4MnjibBLN2UTyPIfI6NrA4dR126rGcauHDcDieGmCr6m1HOy3ryo4X72SdZuVwalkFsU0gLgOhIJ3ILiQR027lrTQ2B4iYGTDajxsWUx0j2ydlKS0te07texzSHMcPM5pBHwqhxHA/ReDp0K1TESCOjlGZqB016xNILjYzE2Vz3yFzyGOLdnEjbbp0C1zF0cXuaos6Fi4oaKuZ3VWZrVctiKWCfXyX+tXTXY2OFZtuTq1peHeW47tY52x3AWWyh1LJwm9kTo3U1zJiLB4eC/TimzsuQsQCWtLIY3WyyN8jCYQSxwI2c5pLmnr9NZ3g/pDUrtQuyeGbafn31pMg508rXSPrgCB7SHAxuYANnR8p3677r0ac4JaJ0ocscbg2RnL1BSyRmsSz+3ovL6T9o93au2keOd+7tjtvt0WOTI4zq7h9VbkeAeCgzWfjr3L9uZ17wvPJcZvi5XFsc73Oexp222aRsCdtu9UuU1fqvTOSz/Datq3K2sY3WWHwkWpLM4kyFSrdrmaWHtyOsjXMEbXu3cO2HnA27YPY2cOxgqeHODndQpWHWqrH5S259eQsEfNG8y87NmNAAaQBt02VrU4JaHo6Gt6Pi07W8Xrkhns1ZHPe6aUkO7V8rnGR0m7WkPLuYco2PQJkyPmzjnUuYHTHGjQPjBnM5gqelaueryZDIyz2Kc7pZWPgdMTzvjeI2v5Hkjv8xX1forTlbSunatCpcyF+ADtBPk78t2Y83X+llc5xHwDfYDuVNpzgzozSuCzWHoYOM0c00syQtzSWpLjSws5ZZZXOe8BpIALugJ22VpobQOE4cYTwRgK01XH9oZRFPbmskHla3o6V7nAbNaA0HYbdAsoi03GhUHh7/XNXftj/lKynKDw9/rmrv2x/wApWWyruq/CPeFjS2KIi8tBERAREQEREBERAREQEREBERAREQEREBERAREQEREGM1t76dJf7az/AMEqwVdqmyM9fxLMLG7IX6lqcixE4GpA6NhZJFYkB3YXF4aA0OcH7HkIY/aMcpn2HY6PyLyO8x2qhaf1bzA/4BephzFeHTETHZ2dsxGmZ0+LLOukVJ4Wz3oZlfWqX89PC2e9DMr61S/nrPI/tH5RzLLtFSeFs96GZX1ql/PVPrHiNNoDTGR1FqDTWRxuGx8Rms2pLFQhjd9u4TEkkkAAAkkgBMj+0flHMs2aLK4DWd/VGEoZjFaWyVzG34GWa1hlmntJG4AtPWfcdD3HqFP8LZ70MyvrVL+emR/aPyjmWXaKk8LZ70MyvrVL+enhbPehmV9apfz0yP7R+Ucyy7UHh7/XNXftj/lKyiMyWoJTyt0jfice51i3VDP3lsrj/cCvZh8fn9FVcrbnij1A21NFZNPGx9nYjkcQyXZ0kgbIxrAwtHku2Y7o4kBa8SYow6omYvOqYnTfQZm4RQMZnMfmZb0VK5FZlozmrajY7d0EoAdyPHe08rmuG/eHNI6EFT15jEREQEREBERAREQEREBERAREQEREBERAREQEX4TsNz3KgbmrmdsMZh42tx7ZbNa1fnDo3xvjHKOxY5m0n4TfyiQ3aM7c24QS85qOrg4JuZst26yEzx42k0SWp2hzW+RHvuRzOaC47NHMC4gdV6JMXk8nkJzeutr46KzDNTgx7nxyuDBu4Tyb+U1zz+I0AbMAcXBzmiTh8BWw8cThzW77a8dWXJWg11qwxhcW9o8Ab+U97ths0F7tgN1ZoPRTpV8dWZXqV4qtdm/LFCwMa3c7nYDp1JJ/eveiICIiAvmX2fHDLW3FLg++lpjJYrH4TGtny2bbfmljlnjgj542R8kbg7ueSHEDcM/d9NLE8b5o6/BjXskpaI24C+TzkgH/AEd/Tcdf7uqDn3sN+GeueEPCSDS+s7+JyUNaTtcXNjLEshZBIOYxvD4mbcriSNt/xj3bBd3UXFV3VMXTgeNnxQsY4fpDQFKQEREBERBAyOCpZW1Rs2YS6xSm7evKx7mOY7YtPVpG4IcQWncHfqCqmtPmtNwVIMgZdQVWMsPs5WKJrJ4w3yoga8Y/CEt3aTGAS4N2Zs48ulRBFxeTq5rHVb9KZtipZjbNFK3fZzHDcHr17j51KVFmdMe2p7mSxVkYrPy1RVZfLDLHytfzsEkPMGyAEuHmcA94a5vMSvZHqSOvkHU8pG3FSSWm1aMliePkyDjEZPwPlblwDJN2EBw7Nx2LdnELlERAREQEREBERAREQEREBERAREQF4TTMrxPlle2ONjS5z3HYNA6kkrzWe1JBLk8xhMcat51EyuuT26tjso2GEtMccu3lOa9zgeUbA9mQ7du7SHhFUdrKKG3cDm4OQVblOlJBNWs87SZOacOLSASYtoXMaWmM8+/NyM0iIgIiICIiAiIgLn/E5x1RfwuiK/luyM7LuTLT/Q4+CRr382x/7V4ZCB5w+Qj8Q7aTVuq6+k8fDK+J9y9bmFWhj4f6W5YcCWxs/c1znOPRjGPe4hrXERdEaWs4KG5fy1hl3UWUkbPkLMW/ZtIbyshhB6thjHRo6bkveRzyPJDTIiICIiAiIgIiIC9c9eKywMmjZKwOa8Ne0OAc0hzT184IBB8xAK9iIM5Xsv0gyCrkbrpsSG8rMvkrMYe2V8wbFA87N5t+0YxjurnFuzyXkF+jXqs1obtaWvYiZPBKwxyRStDmvaRsWkHoQR02VNpy/PHcvYa9Ys3b1Lab25NUELJoZHPMfKW+Q4tDSx22x3aCWtDm7hfIiICIiAiIgIipcxrbT2n7QrZPOY7H2SObsbNpjH7fDyk77LOmiqubUxeVtddIst7qWjvSnEeux/WnupaO9KcR67H9a29XxtifSVyZ1NSiy3upaO9KcR67H9ae6lo70pxHrsf1p1fG2J9JMmdTUost7qWjvSnEeux/WnupaO9KcR67H9adXxtifSTJnU1KxHEHUWB0Xm9L5zP2oMZX7efHjJXMjHUr1+0hdKe0D3ND+Y12tAG5BIPduVO91LR3pTiPXY/rXwX/ANIHwPwvEHUtDiBofLY7JZe7JDRzFGtbY+R+wDIrIG/c1oax3wANPmcU6vjbE+kmTOp/Q3A6gxeqcTXymFyVPL4ywCYbtCdk8MoBLTyvaSDsQR0PeCrBc04c5/QfDrQWn9MUtUYYVsTRiptLbkY5yxoBd397juf3rRe6lo70pxHrsf1p1fG2J9JMmdTUost7qWjvSnEeux/WnupaO9KcR67H9adXxtifSTJnU1KLLe6lo70pxHrsf1p7qWjvSnEeux/WnV8bYn0kyZ1NSqfVGp6uk8YLViOe1NLIIKtGowPsW5nA8sUTSQC47EkkhrWtc97msa5wzmoeNekMFiZrcWZp5SduzIqdK1G6WZ7js1o3cGtG5G7nENaNy4gAlVOmNU6XivnP6g1bgrupJozG3sbsboMdC7lLq1YnY8pLGl8jgHSuaCQ1rY443V8bYn0kyZ1NPpjS9tmTfqLULoLGo5oTXY2s5z6+PrlwcYIC4AnctYZJS1rpXMaSGtZHHHqllvdS0d6U4j12P617IeJmkbEgZHqbEPcdgALsfnOw8/wkD96dXxtifSUtOppURFzoIiICIiAiIgIiICz2eJp6n03cHhiYSyT490NHZ1Rgkj7XtrLfMGmsGNeOrXTbdz3baFZ3WjfwGHfyZd5ZlKp2w52d1fy7zfDAN93/ANkfoQaJERAREQEREELNXHY/D3rTAC+CCSVoPwtaSP8AJZHSVSOtgKUgHNPZiZPPM7q+aRzQXPcT1JJP7u7uC0+qvexmPkc30Cs9pr3uYr5JF9AL0MDswp8V0LJERZoIiICIiAiIgIiICIiAiIgIiIC/HsbIwte0OaRsWuG4K/UQROHbxBDnMZGSKmMyJrVo9ukUboIZgxv9lplIA7gAAAAAFrljuH35T1n+2GfwNRbFc3Se9ny4xCznERFyoIiICIiAiIgLN655PaWK535dg8K09vA345PbN2Ev/kf+J/Y3WkWd1s4tp4vYZg75SmP9S/j/ANM3+l/8j/xP7HMg0SIiAiIgIiIKvVXvYzHyOb6BWe0173MV8ki+gFodVe9jMfI5voFZ7TXvcxXySL6AXo4Pcz4/C6FkiIskEREBERByT2SWtdVaI0zpuxpSGCS1c1HjaM/b2RDzRyWGN7Lcxv2EhPIXAbtDiRuRsvZnOL+pKeocdpTEaLgzWsXYsZbJUm5gQ1KMJeY2j2w6HeRznNcGjs29GknlCuuNegclxE0ZFTwtqrUzVDJU8tRfeDjXdNXnZK1knL5Qa7lIJAJG++x7lk7+hOJFXWFXXWHGlm6muYnwRl8XbsWfaJbHO+SCWGZsXOXNEjg5rmAHfoRtusJvceFL2SUmrK+mqej9KzZrU2XrWrc+Ku3W02Y2OtN2E/by8r+om/BtDWnm236BVNji7a11qbhLPTF/T8z9UZHEZvDmwfIngp2eeGQsPLK0Pa17T3HyTsD3eGnPY/ar4Yzacz+lcnh8tquCneqZluZ7WvVve2rPtp743Rte6Msl3DQWndp2Ox6r20/Y/anw2M01lamXxVvWVPVVrVGRNhkkdKw+1HJFNFHtu9obHIAwkHcs6gb9Mf3aRreF/GTJ8T9RZiKrpeOpp7HXbWPdkX5WN1ps0MhYRLV5A6LmIJb5RO2xIG4XU1xTE8J9W2uOlHW+Vj0ziK9FtyGSfAduLeXhkHLBHba5ob+DGzt+Z/lN6co6Ltazi+kERFkCIiAiIgg8PvynrP8AbDP4Gotisdw+/Kes/wBsM/gai2K5uld55R7QsiIi5UEREBEWR1lxNxWj5Parmy5DJlocKVUAuaD3F7js1g/Wdz12B2W3Cwq8arIw4vI1yLiVjjfqKZxdBicZVae5ks0kxH6yA3/Jen3adVfE8P8A7sv2l60fR+lzoj1hfN3NfH/svvZjZPgFrfHact6HuXMfIa2VpZehn/ahtiN4L4Xs9rP2bzNLXM5jzNIPTmXTfdp1V8Tw/wDuy/aXLuO+APshcfgampqGNaMPfbdhlrCQPc3p2kJJJ8h4Dd9uvkt2PRX9G6Xqj1g830lwe11kOJnDLT+qsngXaat5av7a8GOs+2DFG5x7M8/IzfmZyP8AxRtzbddt1slwmHjHqevEyKLH4WKJjQ1jGMlDWgdAAOboF5+7Tqr4nh/92X7Sfo3S9UesHm7mi4YONOqt+tLDkf8Apl+0rbEcdZ45WtzWFDIPPZx0plLevnjcAdh3+SSf0fDhX9I6XTF8m/hMFnXUUTFZWnm8fDeoWGWqkw3ZLGdweuxH6CCCCD1BBB6hS148xNM2nOir1V72Mx8jm+gVntNe9zFfJIvoBaHVXvYzHyOb6BWe0173MV8ki+gF6GD3M+PwuhZIvReqm7RsVxNJXM0boxNC7lezcbczT5iO8FV3ixB8cyXr0v2lZmUXCKn8WIPjmS9el+0nixB8cyXr0v2lLzqFwip/FiD45kvXpftJ4sQfHMl69L9pLzqFwip/FiD45kvXpftJ4sQfHMl69L9pLzqFwip/FiD45kvXpftJ4sQfHMl69L9pLzqFwip/FiD45kvXpftJ4sQfHMl69L9pLzqFwip/FiD45kvXpftJ4sQfHMl69L9pLzqFwip/FiD45kvXpftJ4sQfHMl69L9pLzqFwij0aLMfCYmSTSgnm5p5XSO/vcSVIVEHh9+U9Z/thn8DUWxWO4fflPWf7YZ/A1FsVz9K7zyj2hZERFyoIiIMrxI1c7R2mnWa4a7IWJG1qjX93aOBPMfhDWtc7bz8u3nXAgHFz3ySPnmkcXyTSu5nyOPe5x85XROPUr/DWlod/wACYrkpHm5x2Ab/AIPeueL7z6Pg04fRoxIz1X4Tb4JzCIi9xgIuAZeTWfEHXes62Lnnrx4SyylVjg1BJjuw3ha8SviZBIJeYuJBedthsB0JNlSxGoNUa9v4XP6iydOxU0zQmnZhbz68Ptwuna+VvLse9vd0B6cwOw24o6TebU0znt78ldtVdgtRY/U1WexjbHtmGCzLUkdyOZyyxvLJG7OA7nAjfuPm3XDtG6jzPFabQuGyWcv4yvLpkZi3LjLBrT3p+1EWxkbsQ0bFxDdty8b9FtPY91TR0XlKxmlsmHPZOPtp3c0km1p45nHzk7bk/CmH0j7tcRTHZMcuY6ciIu1F/oHVcmjNRROLyMVflbFciJ8lrj5LJgPM4Hla4+dvfvyN2+h18mZsA4a9v3dg/qR3eSV9UYmaSxi6csw2lfCxzwf+8WjdfH/XMGmmqjGjPN4nysz0I2qvexmPkc30Cs9pr3uYr5JF9ALQ6q97GY+RzfQKz2mve5ivkkX0AvIwe5nx+F0LJERZIIsnxX1q/hxw21JqeOq+5Ji6MllsUbWuJIHQlrnsDgO8gOBIBDd3EA5LO+yCpaO8I18tgc1cnwdenJm7mNrRe1aZnYCHeXMHEAnq1oc8DrsR1WMzEDrKLmFLjFYPEPXOLyGEnx+ldLwROs5+SSDso5OwNiUyfhufl7J0Jbyxk9Xc3L03r5/ZN4Cjjspdv4HUOOip4nw3AyzWhEt6qZGxtdEwSlzXOc9gDJRG4793Q7MqB19FzzK8Y2Ye7gsfPpHUTsvm32RRxsbKpmeyBjHukce35I2kPaBzuaQTs4NJC/ZeNuGgwOXyslDJNjxuch08+ARxmWa3JJBEBHtJs5ofYDSSR1Y/YHYbrwOhIuYQeyAxE2XgrPwWdgxs2cl06zNSQQ+0zdZM+Hk6SmTldIwtD+Tl3IBIO4EvhDxLyvEluoLNzTdrD46plLNOhblkgcyzHDKYX/iTPdziSOXc8obty8pd1KXgdERZefilourqAYKbV+BizhmbWGMkycLbJlcQGx9kXc3MSQA3bc7hZ/jfrjK6Kx2lW4WOzPkMrqGnR9r04o5Jp4RzTTxsEmzQXRQyN5iW8vNvzN23FvA6Qi5fD7ITBW6NIVMTmreftXbOPbpuOCIX2TV9jOH80gia1gcwl5k5CHs2ceYLN6l415HWfue0NF1cxSZqqe1JPkIIqTrNSvW5mzBjZ5DHziXswXbPbyFxbzktCmVA7oi5tiuOeFyOZxVKLH5d2Lyd6TF0NRyQxCjctRtkLmMIf2nXspAHmMMcW+S47jeJjfZEYTI6Rg1N4DztbD3ZWVsZJNBCZMnO+R0bIq8TZS8ucWkguDW8vlc2wJDKgdURZbQHECrxAqZWSHHXsTaxd52Ou0sh2RlhmbHHIRvFJIxw5ZWHdrj3kHYghalUQeH35T1n+2GfwNRbFY7h9+U9Z/thn8DUWxXP0rvPKPaFkREXKgiIgwHGXTU2a05BeqROmt4ub2x2bBu6SItLZGj9xD9vOWAedcXY9srGvY4PY4bhzTuCPhC+p1ynWvB2WazLf02+vC6Q80mNn8iJzvO6NwB5CevkkEE+dvUn6f6V9QowafsY02jRPwZ3z/LQ1+ZXmPO6bbHueUPwtgkDzbn22Nz+5fj6HEEuPLndNBu/QHC2CQPW10KxpTU1NxbPpnJNcO/smsmH7ixxXp8A570by/qp+tfSxVgT2xif8v8AtMmXPsvwj07q2eHIajxsF3Mmu2C1ZpPmqssAd4cxsnlM79mvLth03Wir6YxlTN2MvDVDMjYrR05Zg93lRRlxY3l32Gxe7qBv1/Ur/wAA570by/qp+tPAOe9G8v6qfrWcVdHibxNN/GDJlgbfBzSF3DYbFy4jarhmllAxWZo5a7T3hsrXh+x84Luu3VflfROQ0hRix2iJsRhMWHyTSV8hTntkyvcXOc1wsM2BJ7uv6Nu5b/wDnvRvL+qn608A570by/qp+tY/42eJpid0xBkywPg/iH+ftM//AISx97V1pyvqKA2PD1/GXgeXsfB1GSty9/Nzc80nNv022222Pfv00gwOfP8A8N5f1U/WrbEcNtVZuVrfBgxEJ77OQe07dfNGxxcT+g8v61jOL0fC/dViR+V+FzJlUYfASatzdPCxNLm2Hc1lzTt2dcdZHH9fRg/S8L6bAAAAGwHmWf0ZoihoqhJFV5p7U5DrNyX+kmI32H6Gjc7NHQbk9SXE6FfF/Uumx0zEjI/1pzfMstyr1V72Mx8jm+gVntNe9zFfJIvoBaHVXvYzHyOb6BWe0173MV8ki+gFpwe5nx+DQl3rElSlYnirS3ZYo3PZWgLBJKQNwxpe5rQT3DmcBuepA6rI+P8Anf8A5a6o9ZxX31bVFUc11Xj8lxg0zf0vd09mdI1bJgklvZD2lPHIyOxE98IbBae7eRjXN3I2AJPUgNPoz3BHw/jtaVZs1yu1RnKeUsS+1dzHXriq32qBz9Q5tYjn83ak8p269RRS2scptcDpslV4l4m9n2z6d1q6aaSuylyW6k0kEUJcJ+0LXta2JvK0xjbzkgKFjPY9x1NFyYCSfT9Iz5ShetT6f04zGttRVrEc3ZSMbK7dzzGQX77AOOzPMuxomTAzFnRPtviXj9WyXOYUcTYxkFIxfimaaKSSXn5u8iBjduX4evmXPvcGyda9XMuq2S6dqapm1Z4OjxJNmeR0sk4hfN2x5g2R7S0tjB2YAQehHaES0DgXBzhFqHI6O0Rb1flRHSqT+MTNOtxhrTxX5nyT7WpXSOLzHJO88oZH5QHNvyro3CPQGR4Z6XOBt5uHN04JpX05G0TXlYx8j5CJT2jxI/med3gM3/7q26JERAy8/DnFWNQDMvt54WxM2fs49Q5BlbmaQQPa4nEXL06s5OU9dwdyqviPw8y+r8/pbM4fP1sLc0/JYnhZbxxuRSSyxdiHOaJYz5Mb5gAD3vB32aQ7eIraBwTLexQoXXYq8Mjjsrm4JLs2Qs6nwkeTr35bT43yyGDnjEbmmJgYWu8lo5SHAla3GaRvScbKuT8HClp7TunXYmlIGMjjlnnliklMMbT5LGMgibvsBu4gb7FdORTJgcZ017H29hMXgcTZ1WLmI0xHP4v12Y7sn15XxSRRzWH9qe3fGyV4byiMEuJIJ2Il6o9j3Q1Dwq0Xo1tqofFU1H1Jcjjm3Ks7oYHQHtq7nAPa5kj9xzggkEO3C62iZMCj0TpeHRumKOJhgx0AgaeZuJoNpVuYkklkLS4MHXu3J+ElXiIqIPD78p6z/bDP4Gotisdw+/Kes/2wz+BqLYrn6V3nlHtCyIiLlQREQEREBERAREQEREBERAREQV2o4X2NPZSKNpdI+rK1rR5yWEBZrS72yaaxLmndrqkJB+EcgW2WTtcPm9vI/GZvJYOF7i81aYgfCHHqS1ssT+Xc9dmkDck7dV24OJTFM0VTbSuiySigeIGQ9M838xS+7p4gZD0zzfzFL7ut98PbjjyLb09FA8QMh6Z5v5il93TxAyHpnm/mKX3dL4e3HHkW3p6KB4gZD0zzfzFL7uniBkPTPN/MUvu6Xw9uOPItvT0UDxAyHpnm/mKX3dPEDIemeb+Ypfd0vh7cceRbenooHiBkPTPN/MUvu6eIGQ9M838xS+7pfD2448i29PRQPEDIemeb+Ypfd08QMh6Z5v5il93S+Htxx5Ft6eigeIGQ9M838xS+7p4gZD0zzfzFL7ul8PbjjyLb09FA8QMh6Z5v5il93TxAyHpnm/mKX3dL4e3HHkW3p6KB4gZD0zzfzFL7uvJmgbm5Eurs1Mw97ezqM36/C2AEfuPnUvh7cceRbe/eH7CL2rZQd2S5cFp2PmqVmH/9muH7lr1ExWKq4THw0qUIgrRAhrdy4kkklxJ3LnEkkuJJJJJJJKlrixq4xK5qjNy7Ce0REWlBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQf/2Q==",
      "text/plain": [
       "<IPython.core.display.Image object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from IPython.display import Image, display\n",
    "\n",
    "try:\n",
    "    display(Image(graph.get_graph().draw_mermaid_png()))\n",
    "except Exception:\n",
    "    # This requires some extra dependencies and is optional\n",
    "    pass"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[ToolMessage(content='LangGraph is a library for building stateful, multi-actor applications with LLMs.', id='c7ee8f20-19bc-430f-a7ad-4219c25fc6ec', tool_call_id='call_LGHiKqqnTR0xCTMQj4iKZ2Uy'), AIMessage(content='LangGraph is a library for building stateful, multi-actor applications with LLMs.', additional_kwargs={}, response_metadata={}, id='a7973d5c-e60b-4c97-8876-d32b9e280acf'), AIMessage(content=\"I'm an AI expert!\", additional_kwargs={}, response_metadata={}, id='e70e7694-b6f1-44bb-bb03-01e6140d8452')]\n",
      "()\n"
     ]
    }
   ],
   "source": [
    "snapshot = graph.get_state(config)\n",
    "print(snapshot.values[\"messages\"][-3:])\n",
    "print(snapshot.next)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "================================\u001b[1m Human Message \u001b[0m=================================\n",
      "\n",
      "I'm learning LangGraph. Could you do some research on it for me?\n",
      "==================================\u001b[1m Ai Message \u001b[0m==================================\n",
      "Tool Calls:\n",
      "  tavily_search_results_json (call_a5QcJ8OTfJ81NCohydwHBe43)\n",
      " Call ID: call_a5QcJ8OTfJ81NCohydwHBe43\n",
      "  Args:\n",
      "    query: LangGraph programming language\n"
     ]
    }
   ],
   "source": [
    "user_input = \"I'm learning LangGraph. Could you do some research on it for me?\"\n",
    "config = {\"configurable\": {\"thread_id\": \"2\"}}  # we'll use thread_id = 2 here\n",
    "events = graph.stream(\n",
    "    {\"messages\": [(\"user\", user_input)]}, config, stream_mode=\"values\"\n",
    ")\n",
    "for event in events:\n",
    "    if \"messages\" in event:\n",
    "        event[\"messages\"][-1].pretty_print()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Original\n",
      "Message ID run-2f27ab36-7466-40c5-adcf-18972d1bc9fa-0\n",
      "{'name': 'tavily_search_results_json', 'args': {'query': 'LangGraph programming language'}, 'id': 'call_a5QcJ8OTfJ81NCohydwHBe43', 'type': 'tool_call'}\n",
      "Updated\n",
      "{'name': 'tavily_search_results_json', 'args': {'query': 'LangGraph human-in-the-loop workflow'}, 'id': 'call_a5QcJ8OTfJ81NCohydwHBe43', 'type': 'tool_call'}\n",
      "Message ID run-2f27ab36-7466-40c5-adcf-18972d1bc9fa-0\n",
      "\n",
      "\n",
      "Tool calls\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "[{'name': 'tavily_search_results_json',\n",
       "  'args': {'query': 'LangGraph human-in-the-loop workflow'},\n",
       "  'id': 'call_a5QcJ8OTfJ81NCohydwHBe43',\n",
       "  'type': 'tool_call'}]"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from langchain_core.messages import AIMessage\n",
    "\n",
    "snapshot = graph.get_state(config)\n",
    "existing_message = snapshot.values[\"messages\"][-1]\n",
    "print(\"Original\")\n",
    "print(\"Message ID\", existing_message.id)\n",
    "print(existing_message.tool_calls[0])\n",
    "new_tool_call = existing_message.tool_calls[0].copy()\n",
    "new_tool_call[\"args\"][\"query\"] = \"LangGraph human-in-the-loop workflow\"\n",
    "new_message = AIMessage(\n",
    "    content=existing_message.content,\n",
    "    tool_calls=[new_tool_call],\n",
    "    # Important! The ID is how LangGraph knows to REPLACE the message in the state rather than APPEND this messages\n",
    "    id=existing_message.id,\n",
    ")\n",
    "\n",
    "print(\"Updated\")\n",
    "print(new_message.tool_calls[0])\n",
    "print(\"Message ID\", new_message.id)\n",
    "graph.update_state(config, {\"messages\": [new_message]})\n",
    "\n",
    "print(\"\\n\\nTool calls\")\n",
    "graph.get_state(config).values[\"messages\"][-1].tool_calls"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "==================================\u001b[1m Ai Message \u001b[0m==================================\n",
      "Tool Calls:\n",
      "  tavily_search_results_json (call_a5QcJ8OTfJ81NCohydwHBe43)\n",
      " Call ID: call_a5QcJ8OTfJ81NCohydwHBe43\n",
      "  Args:\n",
      "    query: LangGraph human-in-the-loop workflow\n",
      "=================================\u001b[1m Tool Message \u001b[0m=================================\n",
      "Name: tavily_search_results_json\n",
      "\n",
      "[{\"url\": \"https://www.youtube.com/watch?v=9BPCV5TYPmg\", \"content\": \"In this video, I'll show you how to handle persistence with LangGraph, enabling a unique Human-in-the-Loop workflow. This approach allows a human to grant an\"}, {\"url\": \"https://medium.com/@kbdhunga/implementing-human-in-the-loop-with-langgraph-ccfde023385c\", \"content\": \"Implementing a Human-in-the-Loop (HIL) framework in LangGraph with the Streamlit app provides a robust mechanism for user engagement and decision-making. By incorporating breakpoints and\"}]\n",
      "==================================\u001b[1m Ai Message \u001b[0m==================================\n",
      "\n",
      "LangGraph is a tool that supports a Human-in-the-Loop (HIL) workflow, which is a process that allows human intervention in automated systems to improve decision-making and outcomes. Here are some resources that might help you understand LangGraph better:\n",
      "\n",
      "1. **YouTube Video**: [Handling Persistence with LangGraph](https://www.youtube.com/watch?v=9BPCV5TYPmg) - This video demonstrates how to manage persistence in LangGraph, enabling a unique Human-in-the-Loop workflow. It shows how a human can intervene in the process to grant permissions or make decisions.\n",
      "\n",
      "2. **Medium Article**: [Implementing Human-in-the-Loop with LangGraph](https://medium.com/@kbdhunga/implementing-human-in-the-loop-with-langgraph-ccfde023385c) - This article discusses implementing a Human-in-the-Loop framework in LangGraph using a Streamlit app. It provides insights into creating a robust mechanism for user engagement and decision-making by incorporating breakpoints and other interactive elements.\n",
      "\n",
      "These resources should give you a good starting point to understand how LangGraph can be used to integrate human decision-making into automated workflows.\n"
     ]
    }
   ],
   "source": [
    "events = graph.stream(None, config, stream_mode=\"values\")\n",
    "for event in events:\n",
    "    if \"messages\" in event:\n",
    "        event[\"messages\"][-1].pretty_print()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "================================\u001b[1m Human Message \u001b[0m=================================\n",
      "\n",
      "Remember what I'm learning about?\n",
      "==================================\u001b[1m Ai Message \u001b[0m==================================\n",
      "\n",
      "You're learning about LangGraph, specifically focusing on its Human-in-the-Loop workflow capabilities.\n"
     ]
    }
   ],
   "source": [
    "events = graph.stream(\n",
    "    {\n",
    "        \"messages\": (\n",
    "            \"user\",\n",
    "            \"Remember what I'm learning about?\",\n",
    "        )\n",
    "    },\n",
    "    config,\n",
    "    stream_mode=\"values\",\n",
    ")\n",
    "for event in events:\n",
    "    if \"messages\" in event:\n",
    "        event[\"messages\"][-1].pretty_print()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}