File size: 20,571 Bytes
252375c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%%capture --no-stderr\n",
"%pip install -U tavily-python langchain_community"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import os\n",
"from dotenv import load_dotenv\n",
"\n",
"load_dotenv()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"openai_api_key = os.getenv(\"OPENAI_API_KEY\")\n",
"model = os.getenv(\"OPENAI_MODEL\", \"gpt-4o\")\n",
"temperature = float(os.getenv(\"OPENAI_TEMPERATURE\", 0))"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'url': 'https://medium.com/@cplog/introduction-to-langgraph-a-beginners-guide-14f9be027141',\n",
" 'content': 'Nodes: Nodes are the building blocks of your LangGraph. Each node represents a function or a computation step. You define nodes to perform specific tasks, such as processing input, making'},\n",
" {'url': 'https://www.datacamp.com/tutorial/langgraph-tutorial',\n",
" 'content': \"In LangGraph, each node represents an LLM agent, and the edges are the communication channels between these agents. This structure allows for clear and manageable workflows, where each agent performs specific tasks and passes information to other agents as needed. State management. One of LangGraph's standout features is its automatic state\"}]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_community.tools.tavily_search import TavilySearchResults\n",
"\n",
"tool = TavilySearchResults(max_results=2)\n",
"tools = [tool]\n",
"tool.invoke(\"What's a 'node' in LangGraph?\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<langgraph.graph.state.StateGraph at 0x10400f4d0>"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_openai import ChatOpenAI as Chat\n",
"from typing import Annotated\n",
"from typing_extensions import TypedDict\n",
"\n",
"from langgraph.graph import StateGraph, START, END\n",
"from langgraph.graph.message import add_messages\n",
"\n",
"\n",
"class State(TypedDict):\n",
" messages: Annotated[list, add_messages]\n",
"\n",
"\n",
"graph_builder = StateGraph(State)\n",
"\n",
"\n",
"llm = Chat(\n",
" openai_api_key=openai_api_key,\n",
" model=model,\n",
" temperature=temperature\n",
")\n",
"# Modification: tell the LLM which tools it can call\n",
"llm_with_tools = llm.bind_tools(tools)\n",
"\n",
"\n",
"def chatbot(state: State):\n",
" return {\"messages\": [llm_with_tools.invoke(state[\"messages\"])]}\n",
"\n",
"\n",
"graph_builder.add_node(\"chatbot\", chatbot)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<langgraph.graph.state.StateGraph at 0x10400f4d0>"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import json\n",
"\n",
"from langchain_core.messages import ToolMessage\n",
"\n",
"\n",
"class BasicToolNode:\n",
" \"\"\"A node that runs the tools requested in the last AIMessage.\"\"\"\n",
"\n",
" def __init__(self, tools: list) -> None:\n",
" self.tools_by_name = {tool.name: tool for tool in tools}\n",
"\n",
" def __call__(self, inputs: dict):\n",
" if messages := inputs.get(\"messages\", []):\n",
" message = messages[-1]\n",
" else:\n",
" raise ValueError(\"No message found in input\")\n",
" outputs = []\n",
" for tool_call in message.tool_calls:\n",
" tool_result = self.tools_by_name[tool_call[\"name\"]].invoke(\n",
" tool_call[\"args\"]\n",
" )\n",
" outputs.append(\n",
" ToolMessage(\n",
" content=json.dumps(tool_result),\n",
" name=tool_call[\"name\"],\n",
" tool_call_id=tool_call[\"id\"],\n",
" )\n",
" )\n",
" return {\"messages\": outputs}\n",
"\n",
"\n",
"tool_node = BasicToolNode(tools=[tool])\n",
"graph_builder.add_node(\"tools\", tool_node)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"from typing import Literal\n",
"\n",
"\n",
"def route_tools(\n",
" state: State,\n",
"):\n",
" \"\"\"\n",
" Use in the conditional_edge to route to the ToolNode if the last message\n",
" has tool calls. Otherwise, route to the end.\n",
" \"\"\"\n",
" if isinstance(state, list):\n",
" ai_message = state[-1]\n",
" elif messages := state.get(\"messages\", []):\n",
" ai_message = messages[-1]\n",
" else:\n",
" raise ValueError(\n",
" f\"No messages found in input state to tool_edge: {state}\")\n",
" if hasattr(ai_message, \"tool_calls\") and len(ai_message.tool_calls) > 0:\n",
" return \"tools\"\n",
" return END\n",
"\n",
"\n",
"# The `tools_condition` function returns \"tools\" if the chatbot asks to use a tool, and \"END\" if\n",
"# it is fine directly responding. This conditional routing defines the main agent loop.\n",
"graph_builder.add_conditional_edges(\n",
" \"chatbot\",\n",
" route_tools,\n",
" # The following dictionary lets you tell the graph to interpret the condition's outputs as a specific node\n",
" # It defaults to the identity function, but if you\n",
" # want to use a node named something else apart from \"tools\",\n",
" # You can update the value of the dictionary to something else\n",
" # e.g., \"tools\": \"my_tools\"\n",
" {\"tools\": \"tools\", END: END},\n",
")\n",
"# Any time a tool is called, we return to the chatbot to decide the next step\n",
"graph_builder.add_edge(\"tools\", \"chatbot\")\n",
"graph_builder.add_edge(START, \"chatbot\")\n",
"graph = graph_builder.compile()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/4gHYSUNDX1BST0ZJTEUAAQEAAAHIAAAAAAQwAABtbnRyUkdCIFhZWiAH4AABAAEAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAAAADTLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkZXNjAAAA8AAAACRyWFlaAAABFAAAABRnWFlaAAABKAAAABRiWFlaAAABPAAAABR3dHB0AAABUAAAABRyVFJDAAABZAAAAChnVFJDAAABZAAAAChiVFJDAAABZAAAAChjcHJ0AAABjAAAADxtbHVjAAAAAAAAAAEAAAAMZW5VUwAAAAgAAAAcAHMAUgBHAEJYWVogAAAAAAAAb6IAADj1AAADkFhZWiAAAAAAAABimQAAt4UAABjaWFlaIAAAAAAAACSgAAAPhAAAts9YWVogAAAAAAAA9tYAAQAAAADTLXBhcmEAAAAAAAQAAAACZmYAAPKnAAANWQAAE9AAAApbAAAAAAAAAABtbHVjAAAAAAAAAAEAAAAMZW5VUwAAACAAAAAcAEcAbwBvAGcAbABlACAASQBuAGMALgAgADIAMAAxADb/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAD5ANYDASIAAhEBAxEB/8QAHQABAAMAAwEBAQAAAAAAAAAAAAUGBwMECAEJAv/EAFAQAAEEAQIDAgYOBQgIBwAAAAEAAgMEBQYRBxIhEzEVFhciQZQIFDI2UVVWYXF0stHS0yNUgZGTN0JDUnWClbMYJCUzcpKWoTQ1U2SxwfD/xAAbAQEBAAMBAQEAAAAAAAAAAAAAAQIDBQQGB//EADQRAQABAgEJBAoDAQEAAAAAAAABAhEDBBIhMUFRUpHRFGGhsQUTFSMzYnGSweEiMoHw8f/aAAwDAQACEQMRAD8A/VNERAREQEREBcNq5XpR89ieOuz+tK8NH7yoO7fu56/PjsVMaVWueS3k2tDnNf8A+lCHAtLh3ue4Frdw0Bzi7k+1uH+n4XmWXFwX7J25rV9vtmZxHpL37n93Rb4opp+JP+Qtt7u+NWF+N6HrLPvTxqwvxxQ9ZZ96eKuF+J6HqzPuTxVwvxPQ9WZ9yvue/wAF0HjVhfjih6yz708asL8cUPWWfenirhfieh6sz7k8VcL8T0PVmfcnue/wNB41YX44oess+9PGrC/HFD1ln3p4q4X4noerM+5PFXC/E9D1Zn3J7nv8DQeNWF+OKHrLPvXcqZCrfaXVbMNlo7zDIHAfuXT8VcL8T0PVmfcupa0Dpy3IJXYanDO07tsVohDM0/NIzZw/YU9zO2fD9JoT6KsR2bmkZ4Yb9qbJYeVwjZen5e1quJ2a2UgAOYegD9twdubfcuFnWuujN74JgREWtBERAREQEREBERAREQEREBRGrsw/T+l8rkYgHTVqz5Imu7i/bzQf27KXVe4hU5b2iczHC0yTNrulYxo3LnM88AD4SW7LbgxE4lMVarwsa0hp/Dx4DDVKEZ5uxZ58npkkJ3e8/O5xc4n4SVIrhp2or1SCzA7nhmY2RjvhaRuD+4rmWFUzNUzVrQVS4gcVtLcLose/UmTNJ+QkdFUghrTWZp3NbzP5IoWPeQ0dSdthuNyFbVinslaFR8GncnHj9YN1Jjn2ZMRnNHY43ZqEro2hzJogHB0cvQFrmlp5epb0KxHZynsmNP43irpvSba161RzeF8Lw5Orjrc4PPJC2FobHC7zXNkc50hIDNmh3KXBWC1x+0FR1y3SFnPe186+02i2KWnO2E2HDdsInMfZdodxs3n3O4GyymPL6z07rvhdr7WOk8tdt2NI2cTmIdPUH3H070ktaYc8Ue5a13ZPG43DT0J9KoHFvH6z1PNqYZjDa/y2oMfquC3j6mNgmGFhxMFyKSOSNsZEdiQxNJI2fLzno0AdA9MW+O2iaesb2lDlLFjUNGaOvaoU8basPgdJG2RheY4nBrC17fPJ5dyRvuCBF8BePeN454Kzcq0buOuV7FmOSvPSssjEbLEkUbmzSRMY9zmsDnMaSWElrgCF1uEun7uM4xcaclaxtipBkstj3Vbc0DmNtRsx0DSWOI2e1r+dvTcA8w791F+xjsZDS+HymhMxp7NY3JYvKZS17esUXtoWYZb0ksbobG3I8ubM08oO45XbgbINwREQdfIUK+VoWaVuJs9WzG6GWJ/c9jhs4H6QSojQ1+e/puEWpe3t1JZqM0p33kfDK6IvO/8AW5Ob9qn1WeHje00/JcG/Jfu2rkfMNt45J3ujO3zs5T+1ein4NV98fldizIiLzoIiICIiAiIgIiICIiAiIgIiIKpTnZoN5o29osA55dTt9eSpudzDKe5jdyeR/Ru2zDsQ3tOPVfCLQ2v8jHktR6SwmfvNiELLWQoxTyCMEkNDnAnl3c47fOVbXsbIxzHtD2OGxa4bgj4Cq0/h9joSTjbOQwoP9Fjrb44h8G0R3jb+xo/7BeiaqMTTXNp53/7/AFlolXj7G3hQWhvk30tygkgeCYNgfT/N+YKzaP4d6W4ew2YtMaexmn4rLmunZjajIBKRuAXBoG+257/hXD4k2PlVnv40P5SeJNj5VZ7+ND+Unq8Pj8JS0b1oRVfxJsfKrPfxofylU72Oy1firg9PM1TmPB1zC378pMsPadrDPTYzb9H7nlsSb9O/l6j0vV4fH4SWje1RQurNF4DXeMbjtR4Whnce2QTNq5Gu2eMPAIDuVwI3AcRv85XR8SbHyqz38aH8pPEmx8qs9/Gh/KT1eHx+Elo3oBvsbuFLA4N4caXaHjZwGJg6jcHY+b8IH7lJ6Z4K6A0Zl4srgNF4HDZOIObHco4+KGVocNnAOa0EbgkFdzxJsfKrPfxofyl98QKdh3+0MhlcqzffsbV14iP0sZytcPmcCEzMONdfKP8AwtD+crkPG7t8Nipeeo/mhyGRhd5kLOodFG4d8p7unuBu4kHla6ywQR1oI4YWNiijaGMYwbBrQNgAPQF8q1YaVeOvXhjrwRtDWRRNDWtA7gAOgC5VhXXExm06oJERFqQREQEREBERAREQEREBERAREQEREBERAWfZYt8v2lgSebxYy+w9G3trG7+n6PR+0enQVn+V38v2lurdvFjL9CBv/wCKxvd6dvo6d2/oQaAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgLPcsB/pA6VPM0HxXzHm7dT/reM677d37fSP2aEs9y23+kFpXqebxXzGw5f/d4z0/8A7/sg0JERAREQEREBERAREQEREBERAREQEREBERAREQEVVyuq70mQsUsHRr23VXclizcndFEx+wPI3la4vcARv3Ab7bkggdLw7rD9Qwfrc35a9VOTYkxfRH+wtl3RUjw7rD9Qwfrc35aeHdYfqGD9bm/LWXZa98c4LLuvAesfZ7ZXT3siK+JtcK53ahxMdzTox8WYDu3lnsVnNex3tfflPtcbbDzg8H0BexfDusP1DB+tzflrIM97H+bUPsg8PxasY/DDM46r2JqCxIYp5mjlincez352NOw/4Wf1erste+OcFnpZFSPDusP1DB+tzflp4d1h+oYP1ub8tOy1745wWXdFSPDusP1DB+tzflp4d1h+oYP1ub8tOy1745wWXdFT6er8pRswsz2PqV6sz2xNuUbD5WxvcdmiRrmNLQSQOYE9SNwB1VwWjEwqsOf5ExYREWpBERAREQEREBERAREQEREBERBn2kTzNzZPf4Xu9fomcFPKA0h7jNf2xd/znKfXYxf7ys6xEUPhdXYnUOUzeOx9v2xcwtltS/H2b29jK6Nsobu4AO8x7Tu0kddu/cLSiYRF0TnMe3Nsw5uweFX13WxS7QdqYQ4NMnL38vM4Dfu3Ko7yKH07q7E6sOVGKt+2ji70mNt/o3s7KxGGl7POA325m9RuDv0KmFARdE5zHtzbMObsHhV9d1sUu0HamEODTJy9/LzOA37tyu8qK7xBO2kMgR3jsyPmPaN2WirOuIXvPyP0M+21aKsMo+FR9Z8qWWwREXPYiIiAiIgIiICIiAiIgIiICIiDPdIe4zX9sXf85yn1AaQ9xmv7Yu/5zlPrsYv95WdbAdK4jIcaNc8QrmW1fqLCx6ezzsNj8Tg8i6nHBFHFE8TSNb/vXSmRx/SczdgAAqDqjT99tz2R+rcZqnPYPJadteEKUONuGGu6aHFwSgyxgbSh3KGlr927dwBJK3zVnATQet9Qy5zMYET5SeNkVieC1PXFpjfctmbE9rZQB0HOHdOncpifhjpq1S1bUlxvNX1WHDMs7eUe2g6AQHrzbs/RtDfM5e7fv6rzZt0ec+M2rc9q6HUGT0nb1JVy+mdNQZPIWKuoDjsbSmfA6xHtXEb/AG08t6ua/ZnKGjmaSVN4bBxa69krpLOXshlq1y3oKDLvjo5SxXiMotQ7s5GPAMR5vOjI5XHqQStXznADQOpMhHcyWnmWZW1YqT2GzM2KeGMbRsmjDwyblHcZA4hc2S4GaJy1bTkNnESHxegFbGSxXrEc0EIDR2ZkbIHvZsxvmvLh07lM2R52s4G9itG8c9eYrWGc0/mNPanyt2pBXultCV8UcTxHLXPmSdofMPNueo229M6cln+KNPipqfJatzmjrmlYmNxuNxl51aCmW0I7XbTx90we+R24kBHK3Ybd61+97HHh1ks/NmbWm2WLs9w5CdslucwT2C7m7SSHtOzkIPdzNO2wA2AAXb1jwH0Jr7OuzGdwDLt+RjIp3NsTRMtMYd2NnjY9rJgPQJA4ejuTNkYxo3H+Unj/AKE1NlbeXoZLI8PKubmrUsnYrRib2xATGY2PAMW7vOjPmuPVwJXqVVLVfCjSutclh8hlsX2l7EbilZrWJa0kTSQSzeJzS5h5W+Y7dvTuVtWcRYV3iF7z8j9DPttWirOuIXvPyP0M+21aKplHwqPrPlSy2CIi57EREQEREBERAREQEREBERAREQZ7pD3Ga/ti7/nOU+oy7icrp7IXZsdj3ZijcmdZMMUzI5oZHDzwOdwa5pI37wQSe/0R3jPmDfbTbo3LvmLXOcWTVHMZy8m4e8TcrXESNIaSCRuQCGkjs1WxJz6ZjT3xHnLKYvpWRFCeFs98jMr61S/PTwtnvkZlfWqX56xzPmj7o6lk2ihPC2e+RmV9apfnqr3eMdbH8Qsfoexg78WqshUfdrY4z1eaSFm/M7m7blHc47E7kNJA2BTM+aPujqWaGihPC2e+RmV9apfnp4Wz3yMyvrVL89Mz5o+6OpZNooTwtnvkZlfWqX56eFs98jMr61S/PTM+aPujqWcHEL3n5H6GfbatFWb0HXtdyNo2cZLg6kcjZrMN6VgtSNZKQGtiYTsxzoyO0J2LQeUHmDhpC82UTEU00XvMXnRp126E6rCIi8LEREQEREBERAREQEREBERARfHODGlziGtA3JPcFAxvsansNkjkmpYiCc+5Ebm5SMxdCHbkti5nnu5XOdECD2Z/SB/M+Qs6lE1bEyy06ZjhlZnIuykilBk8+OEbkl3I07vLeUdowt5yHBstjcVTw8MkNGrFUikmksPbEwNDpJHl8jzt3uc5xJPpJK5q1aGlWir14mQQRMEccUTQ1rGgbBoA6AAdNlyoCIiAvzx4g+xl43Z72XVTWVbUWlaufnM2ZxcbrtoxQVKksEQgeRX9IsRggAg7v3Pw/ocs/wAhyzcfMByhpdX0zkec7nmaJLVHl6d2x7J3/L9KDQEREBERBFZvTtfMsfK176GTFeStXytVkftqq15aXdm57XDbmZG4tcC1xY3ma4DZdV+opcRekhzcUNKpLahq0L0cjntsukb0bIOUdi/nBYASWu5o9ncz+Rs+iAirIqy6Jqh1NktrT9WCxNNWHbWrjHc3aNEI3c57QC9oiAJADGsGwDVYoJ47MLJoniSJ7Q5rm9xB7ig5EREBERAREQEREBERARFxWp/ataabkfL2bC/kjG7nbDfYD0lBAWRDrK9cx7uSfCVHSU8lSuY/njuvdGxwY17/ADXRtDzzcrXAv2bzAxyMNkUDoOPk0XhHdrlJjJUjmL82f9d3e0OImA6B45ti0dARsOgCnkBERAREQFn3DgnVeodQa435qOREWOxDt9w+jAXkTjrttLLLM4Ee6jbCfg2/vUtqXiFlbGlMZM6PEV3hmfyELnNdy7B3tKJw7pHgjtHA7sjdsNnyNcy9V68VSCOCCNkMMTQxkcbQ1rGgbAADuAHoQciIiAiIgIiICgbtF+Bt2srRazsJ5PbGShc2WR7w2Pl54ms5vP5WsHKGnn5QOh6meRB1sdkauYx9W/RsR26VqJs8FiFwcyWNwDmuaR0IIIIPzrsqv4WWSjqTMYuR+UtMcGZGGzbiBrxtlLmmvFKO8sdEXlrurRMzYkbBtgQEREBERAREQERQuY1tp7T9oVsnnMdj7JHN2Nm0xj9vh5Sd9lnTRVXNqYvK2umkVW8qWjvlTiPXY/vVZ4l3+G3FfQmZ0ln9R4qbFZSDsZQy/G17SCHMe07+6a9rXDfpu0bgjotvZ8bgnlK5s7kjoXiBpeGWpow6k31NSdLSGKzuQidmJxCXDtnx83O8PjYJWv286NzXnvKvy/OL2FPBejwV9kTq+/qPN4uTH4ema2JyntlgiuGZw/SRnfbcRtcHDvaX7H5/enlS0d8qcR67H96dnxuCeUmbO5aUVW8qWjvlTiPXY/vTypaO+VOI9dj+9Oz43BPKTNnctKpuezuQ1Bl5NOabl7CSItGVzPLzNx7CN+yi3HK+y5vc07iJrhI8HeOOaIyXEarrPOs0vpbOVIHyx89vLxTxudCwj3FZrtxLMfh2LIx1dueVjr1g8HQ03i4cdjazatOHmLY2kklznFz3ucdy5znOc5znEuc5xJJJJWqqiqibVxZLWfMDgaGmMRWxmMritSrghjOYuJJJc5znOJc97nEuc9xLnOcSSSSVIIiwQREQEREBERAREQV22Q3iHihvmSX4u50i/wDLRyzVv998E55v0fwsE/wKxLHMn7IrhVX4jYqGXifhYnsxt9r4mZ2oMeHCaoNp/wBJ0nHXsx/V9sfAtjQEREBERAREQdLNXHY/D3rTAC+CCSVoPwtaSP8A4VR0lUjrYClIBzT2YmTzzO6vmkc0Fz3E9SST+zu7grPqr3sZj6nN9gqvaa97mK+qRfYC6GBowp+q7EkiIs0EREBERB1clja2WpyVrUYkif8APsWkdQ5pHVrgdiHDqCAR1Xf0HlJ81ovB3rT+1sz04nyybbc7uUbu29G567fOuJcPCz+TnTn1GL7KxxdODPdMeU9F2LSiIucgiIgIireutZwaKxAsOjFm5O/sqtXm5e1f3kk+hrRuSfgGw3JAOzDw6sWuKKIvMiZyeWo4So63kblehVb7qe1K2Ng+lziAqxLxh0dC8tOchcR03jjkeP3hpCw/J2rWdyPhDK2HX73XlkkHmxDf3Mbe5jeg6DqdgSSeq419bheg8OKfe1zfu/dy8Nx8s2jfjpvq8v4E8s2jfjpvq8v4FhyLd7Dybiq5x0LwwLiR7HTSeqfZjY7Ule5GeHuSk8MZVwikDY7DDu+Dl25v0r+U9BsA93wL3d5ZtG/HTfV5fwLDkT2Hk3FVzjoXhuPlm0b8dN9Xl/AvrOMmjXu28Nxt+d8MjR+8tWGonsPJuKrnHQvD0th9QYzUNd0+LyFXIRNPK51aVsgafgOx6H5ipBeWIDJSvR3qU8lG/H7i1XIa9vzHoQ4dB5rgQduoK3Xhvr4axpTV7bWQZemGieNnuZWnulYPQ0kEEd7SCOo2J4uXei6slp9ZRN6fGF16lyREXCRF6q97GY+pzfYKr2mve5ivqkX2ArDqr3sZj6nN9gqvaa97mK+qRfYC6OD8Gfr+F2O9YdIyCR0LGyzBpLGOdyhztugJ2O3X07FeduFvHrVGM4K5jWevMVFYr1L1uCrNj7oms3Z/CEleOsIexjazZ3JG13MeYDmIb1Xo1ee4eAWrpdA6l0FPkcLFgHX5svgctCZXXIbJvC5E2eItDOVry5pLXkkbdApN9iLA32Qk+lrWZqcQ9MHSFqhhZc/F7VyDchHZrRODZWteGM2la5zBybbHnGziFwV+N+dnsVcRqfR02jptQYu3awlmPJttOe+KHtXRShrGmGUMPOAC4ea7ztwo3M8CNUcXMhm73EW5hqLp9O2NP0KmnnSzRw9u5rpLL3ytYS7eOPZgGwAO5Peu7juFGutX6q01kdf38EyppqnahqMwJme+5YngNd08vaNaIwIy/Zjebq8+d0Cn8hB6S445jTXDDgtjIsW7VeqNV4RkzZ8rlhUZI+KCJ0nNO9ry+V5kGzdiXbOJI2XoTHzT2aFaazWNOzJE18tcvD+yeQCWcw6HY7jcdDsvP1jgtr53BDA8PbFHQuoq+PqSY6STK+2Wjs2NayrYj5WOLJmgOLgPTtyvC2zQen7elNE4DC38lJmL2OoQVJ8hNvz2XsjDXSHck7uIJ6knr1JVpvtE6uHhZ/Jzpz6jF9lcy4eFn8nOnPqMX2VcX4M/WPKV2LSiIucgiIgLAuLOSdkuIliBziYsbVjgjae5rpP0jyPpHZA/8AW+rAuLONdjOIc87mkRZOrHPG89znx/o3gfQOyP98Lvehc3tWnXabeH4uuyVWRdfI34sXRntziUwwsL3iGF8r9h8DGAucfmAJVVHFvT5/os5/07kPyF9vViUUaKpiGtcnODWkkgAdST6FidL2UGHu5Co9kGPOEt22VIp2ZqB17zn8jZHUx54YXEH3RcGnctCvbOKOn7721exzR7c9ns/T99jTv06uMAAHXvJ2Ve4faE1doOLH6fa/T97TNCRzYr0zZRfdX3JawsA5OYbgc/N3D3O68mJXXXVT6mrRttad1vyrin43X68OUyUmli3T2LzMmHuX/CDe0aW2BCJWRcnnN3c0kFzSNyBzAbnr8TOKGYmw+uaOl8JNcgwtGeK7mm3xWNWcwF+0I2Je+NrmuOxbsegO658jwmy9vh1rDAMs0hczGdmydd7nv7NsT7bJgHnk3DuVpGwBG/p9K4NQ8NNYV/HnH6cs4WTCaqE00gybpmTVbEsAikLeRpD2u5Wnrtsfh9OiqcozbTfTHdfb+ho+i55bWjsFNNI+aaShA98kji5znGNpJJPeSfSphUXH63xWjcZQwd9uUku4+tDWmdTwt6eIubG0EtkZCWuHzgrn8runj/AEWd/wCnch+QvbTi4cRETVF/qi5qW0VknYfXuAsscWiac0pQP57JWkAf84jd/dVbwuarZ/HR3agsNgeSALVaWvJ0Ox3ZI1rh3ekdVZNE412Z17gKzG8zYJzdlI/mMjaSD/zmMf3lMomicCuatVp8mVOt6QREX5gqL1V72Mx9Tm+wVXtNe9zFfVIvsBWnM03ZHEXqjCA+eCSIE+guaR/9qoaSuR2MDThB5LNaFkFiB3R8MjWgOY4HqCD+8bEdCF0MDThTHeuxMIiLNBERAREQFw8LP5OdOfUYvsrjyeUrYio+zalEcbegHe57j0DWtHVziSAGjckkAdSpDQmLnwmjMJRtM7OzBTiZLHvvyP5Ru3f07Hpv8yxxdGDPfMeU9V2J1ERc5BERAVc1zoyDWuHFZ8grW4X9rVtcvMYn93UdN2kbgjfuPQggEWNFsw8SrCriuibTA8u5Wpa0/kPaGWrnH3OvK153ZKP60b+547u7qNxuGnouNenMli6WZqPq36kF6s/3UNmJsjD9LSCFWJeEGjpXFxwNdpPXaNz2D9wIC+twvTmHNPvaJv3fstDCkW5eRvRvxHF/Fk/Enkb0b8RxfxZPxLd7cybhq5R1LQw1FuXkb0b8RxfxZPxJ5G9G/EcX8WT8Se3Mm4auUdS0MNRbl5G9G/EcX8WT8S+s4O6NY7fwFA75nve4fuLtk9uZNw1co6lo3sLrCXIXmUaMEl++/wBzVrgOefnPXZo6jznEAb9St24caCGjaM09p7J8vb5TPIz3EbR7mJh7y0Ek7nq4knYDZrbFiMFjcBXMGMoVsfCTuWVomxhx+E7DqfnK764mXelKsrp9XRFqfGV1ahERcNBQuY0Vp/UNgWMpg8bkZwOUS2qkcjwPg3cCdlNIsqa6qJvTNpNSreSvRnyTwn+HxfhTyV6M+SeE/wAPi/CrSi3doxuOecred6reSvRnyTwn+HxfhTyV6M+SeE/w+L8KtKJ2jG455yXneq3kr0Z8k8J/h8X4U8lejPknhP8AD4vwq0onaMbjnnJed6DxWhtOYKy2zjsBjKFhu/LNWqRxvbv37EDcbqcRFqqrqrm9U3TWIiLAEREBERAREQEREBERAREQEREBERB//9k=",
"text/plain": [
"<IPython.core.display.Image object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from IPython.display import Image, display\n",
"\n",
"try:\n",
" display(Image(graph.get_graph().draw_mermaid_png()))\n",
"except Exception:\n",
" # This requires some extra dependencies and is optional\n",
" pass"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Assistant: \n",
"Assistant: [{\"url\": \"https://langchain-ai.github.io/langgraph/\", \"content\": \"LangGraph is a framework for creating stateful, multi-actor applications with LLMs, using cycles, controllability, and persistence. Learn how to use LangGraph with LangChain, LangSmith, and Anthropic tools to build agent and multi-agent workflows.\"}, {\"url\": \"https://langchain-ai.github.io/langgraph/tutorials/\", \"content\": \"LangGraph is a framework for building language agents as graphs. Learn how to use LangGraph to create chatbots, code assistants, planning agents, reflection agents, and more with these notebooks.\"}]\n",
"Assistant: LangGraph is a framework designed for creating stateful, multi-actor applications using large language models (LLMs). It emphasizes the use of cycles, controllability, and persistence to build complex workflows. LangGraph can be integrated with tools like LangChain, LangSmith, and Anthropic to develop agent and multi-agent workflows. It is particularly useful for building language agents as graphs, which can include applications such as chatbots, code assistants, planning agents, and reflection agents. You can find more information and tutorials on how to use LangGraph on their [official website](https://langchain-ai.github.io/langgraph/).\n"
]
}
],
"source": [
"def stream_graph_updates(user_input: str):\n",
" for event in graph.stream({\"messages\": [(\"user\", user_input)]}):\n",
" for value in event.values():\n",
" print(\"Assistant:\", value[\"messages\"][-1].content)\n",
"\n",
"\n",
"user_input = \"What do you know about LangGraph?\"\n",
"try:\n",
" stream_graph_updates(user_input)\n",
"except Exception as e:\n",
" print(f\"An error occurred: {e}\")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|