File size: 20,571 Bytes
252375c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "%%capture --no-stderr\n",
    "%pip install -U tavily-python langchain_community"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "True"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import os\n",
    "from dotenv import load_dotenv\n",
    "\n",
    "load_dotenv()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "openai_api_key = os.getenv(\"OPENAI_API_KEY\")\n",
    "model = os.getenv(\"OPENAI_MODEL\", \"gpt-4o\")\n",
    "temperature = float(os.getenv(\"OPENAI_TEMPERATURE\", 0))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[{'url': 'https://medium.com/@cplog/introduction-to-langgraph-a-beginners-guide-14f9be027141',\n",
       "  'content': 'Nodes: Nodes are the building blocks of your LangGraph. Each node represents a function or a computation step. You define nodes to perform specific tasks, such as processing input, making'},\n",
       " {'url': 'https://www.datacamp.com/tutorial/langgraph-tutorial',\n",
       "  'content': \"In LangGraph, each node represents an LLM agent, and the edges are the communication channels between these agents. This structure allows for clear and manageable workflows, where each agent performs specific tasks and passes information to other agents as needed. State management. One of LangGraph's standout features is its automatic state\"}]"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from langchain_community.tools.tavily_search import TavilySearchResults\n",
    "\n",
    "tool = TavilySearchResults(max_results=2)\n",
    "tools = [tool]\n",
    "tool.invoke(\"What's a 'node' in LangGraph?\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<langgraph.graph.state.StateGraph at 0x10400f4d0>"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from langchain_openai import ChatOpenAI as Chat\n",
    "from typing import Annotated\n",
    "from typing_extensions import TypedDict\n",
    "\n",
    "from langgraph.graph import StateGraph, START, END\n",
    "from langgraph.graph.message import add_messages\n",
    "\n",
    "\n",
    "class State(TypedDict):\n",
    "    messages: Annotated[list, add_messages]\n",
    "\n",
    "\n",
    "graph_builder = StateGraph(State)\n",
    "\n",
    "\n",
    "llm = Chat(\n",
    "    openai_api_key=openai_api_key,\n",
    "    model=model,\n",
    "    temperature=temperature\n",
    ")\n",
    "# Modification: tell the LLM which tools it can call\n",
    "llm_with_tools = llm.bind_tools(tools)\n",
    "\n",
    "\n",
    "def chatbot(state: State):\n",
    "    return {\"messages\": [llm_with_tools.invoke(state[\"messages\"])]}\n",
    "\n",
    "\n",
    "graph_builder.add_node(\"chatbot\", chatbot)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<langgraph.graph.state.StateGraph at 0x10400f4d0>"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import json\n",
    "\n",
    "from langchain_core.messages import ToolMessage\n",
    "\n",
    "\n",
    "class BasicToolNode:\n",
    "    \"\"\"A node that runs the tools requested in the last AIMessage.\"\"\"\n",
    "\n",
    "    def __init__(self, tools: list) -> None:\n",
    "        self.tools_by_name = {tool.name: tool for tool in tools}\n",
    "\n",
    "    def __call__(self, inputs: dict):\n",
    "        if messages := inputs.get(\"messages\", []):\n",
    "            message = messages[-1]\n",
    "        else:\n",
    "            raise ValueError(\"No message found in input\")\n",
    "        outputs = []\n",
    "        for tool_call in message.tool_calls:\n",
    "            tool_result = self.tools_by_name[tool_call[\"name\"]].invoke(\n",
    "                tool_call[\"args\"]\n",
    "            )\n",
    "            outputs.append(\n",
    "                ToolMessage(\n",
    "                    content=json.dumps(tool_result),\n",
    "                    name=tool_call[\"name\"],\n",
    "                    tool_call_id=tool_call[\"id\"],\n",
    "                )\n",
    "            )\n",
    "        return {\"messages\": outputs}\n",
    "\n",
    "\n",
    "tool_node = BasicToolNode(tools=[tool])\n",
    "graph_builder.add_node(\"tools\", tool_node)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "from typing import Literal\n",
    "\n",
    "\n",
    "def route_tools(\n",
    "    state: State,\n",
    "):\n",
    "    \"\"\"\n",
    "    Use in the conditional_edge to route to the ToolNode if the last message\n",
    "    has tool calls. Otherwise, route to the end.\n",
    "    \"\"\"\n",
    "    if isinstance(state, list):\n",
    "        ai_message = state[-1]\n",
    "    elif messages := state.get(\"messages\", []):\n",
    "        ai_message = messages[-1]\n",
    "    else:\n",
    "        raise ValueError(\n",
    "            f\"No messages found in input state to tool_edge: {state}\")\n",
    "    if hasattr(ai_message, \"tool_calls\") and len(ai_message.tool_calls) > 0:\n",
    "        return \"tools\"\n",
    "    return END\n",
    "\n",
    "\n",
    "# The `tools_condition` function returns \"tools\" if the chatbot asks to use a tool, and \"END\" if\n",
    "# it is fine directly responding. This conditional routing defines the main agent loop.\n",
    "graph_builder.add_conditional_edges(\n",
    "    \"chatbot\",\n",
    "    route_tools,\n",
    "    # The following dictionary lets you tell the graph to interpret the condition's outputs as a specific node\n",
    "    # It defaults to the identity function, but if you\n",
    "    # want to use a node named something else apart from \"tools\",\n",
    "    # You can update the value of the dictionary to something else\n",
    "    # e.g., \"tools\": \"my_tools\"\n",
    "    {\"tools\": \"tools\", END: END},\n",
    ")\n",
    "# Any time a tool is called, we return to the chatbot to decide the next step\n",
    "graph_builder.add_edge(\"tools\", \"chatbot\")\n",
    "graph_builder.add_edge(START, \"chatbot\")\n",
    "graph = graph_builder.compile()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/4gHYSUNDX1BST0ZJTEUAAQEAAAHIAAAAAAQwAABtbnRyUkdCIFhZWiAH4AABAAEAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAAAADTLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkZXNjAAAA8AAAACRyWFlaAAABFAAAABRnWFlaAAABKAAAABRiWFlaAAABPAAAABR3dHB0AAABUAAAABRyVFJDAAABZAAAAChnVFJDAAABZAAAAChiVFJDAAABZAAAAChjcHJ0AAABjAAAADxtbHVjAAAAAAAAAAEAAAAMZW5VUwAAAAgAAAAcAHMAUgBHAEJYWVogAAAAAAAAb6IAADj1AAADkFhZWiAAAAAAAABimQAAt4UAABjaWFlaIAAAAAAAACSgAAAPhAAAts9YWVogAAAAAAAA9tYAAQAAAADTLXBhcmEAAAAAAAQAAAACZmYAAPKnAAANWQAAE9AAAApbAAAAAAAAAABtbHVjAAAAAAAAAAEAAAAMZW5VUwAAACAAAAAcAEcAbwBvAGcAbABlACAASQBuAGMALgAgADIAMAAxADb/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAD5ANYDASIAAhEBAxEB/8QAHQABAAMAAwEBAQAAAAAAAAAAAAUGBwMECAEJAv/EAFAQAAEEAQIDAgYOBQgIBwAAAAEAAgMEBQYRBxIhEzEVFhciQZQIFDI2UVVWYXF0stHS0yNUgZGTN0JDUnWClbMYJCUzcpKWoTQ1U2SxwfD/xAAbAQEBAAMBAQEAAAAAAAAAAAAAAQIDBQQGB//EADQRAQABAgEJBAoDAQEAAAAAAAABAhEDBBIhMUFRUpHRFGGhsQUTFSMzYnGSweEiMoHw8f/aAAwDAQACEQMRAD8A/VNERAREQEREBcNq5XpR89ieOuz+tK8NH7yoO7fu56/PjsVMaVWueS3k2tDnNf8A+lCHAtLh3ue4Frdw0Bzi7k+1uH+n4XmWXFwX7J25rV9vtmZxHpL37n93Rb4opp+JP+Qtt7u+NWF+N6HrLPvTxqwvxxQ9ZZ96eKuF+J6HqzPuTxVwvxPQ9WZ9yvue/wAF0HjVhfjih6yz708asL8cUPWWfenirhfieh6sz7k8VcL8T0PVmfcnue/wNB41YX44oess+9PGrC/HFD1ln3p4q4X4noerM+5PFXC/E9D1Zn3J7nv8DQeNWF+OKHrLPvXcqZCrfaXVbMNlo7zDIHAfuXT8VcL8T0PVmfcupa0Dpy3IJXYanDO07tsVohDM0/NIzZw/YU9zO2fD9JoT6KsR2bmkZ4Yb9qbJYeVwjZen5e1quJ2a2UgAOYegD9twdubfcuFnWuujN74JgREWtBERAREQEREBERAREQEREBRGrsw/T+l8rkYgHTVqz5Imu7i/bzQf27KXVe4hU5b2iczHC0yTNrulYxo3LnM88AD4SW7LbgxE4lMVarwsa0hp/Dx4DDVKEZ5uxZ58npkkJ3e8/O5xc4n4SVIrhp2or1SCzA7nhmY2RjvhaRuD+4rmWFUzNUzVrQVS4gcVtLcLose/UmTNJ+QkdFUghrTWZp3NbzP5IoWPeQ0dSdthuNyFbVinslaFR8GncnHj9YN1Jjn2ZMRnNHY43ZqEro2hzJogHB0cvQFrmlp5epb0KxHZynsmNP43irpvSba161RzeF8Lw5Orjrc4PPJC2FobHC7zXNkc50hIDNmh3KXBWC1x+0FR1y3SFnPe186+02i2KWnO2E2HDdsInMfZdodxs3n3O4GyymPL6z07rvhdr7WOk8tdt2NI2cTmIdPUH3H070ktaYc8Ue5a13ZPG43DT0J9KoHFvH6z1PNqYZjDa/y2oMfquC3j6mNgmGFhxMFyKSOSNsZEdiQxNJI2fLzno0AdA9MW+O2iaesb2lDlLFjUNGaOvaoU8basPgdJG2RheY4nBrC17fPJ5dyRvuCBF8BePeN454Kzcq0buOuV7FmOSvPSssjEbLEkUbmzSRMY9zmsDnMaSWElrgCF1uEun7uM4xcaclaxtipBkstj3Vbc0DmNtRsx0DSWOI2e1r+dvTcA8w791F+xjsZDS+HymhMxp7NY3JYvKZS17esUXtoWYZb0ksbobG3I8ubM08oO45XbgbINwREQdfIUK+VoWaVuJs9WzG6GWJ/c9jhs4H6QSojQ1+e/puEWpe3t1JZqM0p33kfDK6IvO/8AW5Ob9qn1WeHje00/JcG/Jfu2rkfMNt45J3ujO3zs5T+1ein4NV98fldizIiLzoIiICIiAiIgIiICIiAiIgIiIKpTnZoN5o29osA55dTt9eSpudzDKe5jdyeR/Ru2zDsQ3tOPVfCLQ2v8jHktR6SwmfvNiELLWQoxTyCMEkNDnAnl3c47fOVbXsbIxzHtD2OGxa4bgj4Cq0/h9joSTjbOQwoP9Fjrb44h8G0R3jb+xo/7BeiaqMTTXNp53/7/AFlolXj7G3hQWhvk30tygkgeCYNgfT/N+YKzaP4d6W4ew2YtMaexmn4rLmunZjajIBKRuAXBoG+257/hXD4k2PlVnv40P5SeJNj5VZ7+ND+Unq8Pj8JS0b1oRVfxJsfKrPfxofylU72Oy1firg9PM1TmPB1zC378pMsPadrDPTYzb9H7nlsSb9O/l6j0vV4fH4SWje1RQurNF4DXeMbjtR4Whnce2QTNq5Gu2eMPAIDuVwI3AcRv85XR8SbHyqz38aH8pPEmx8qs9/Gh/KT1eHx+Elo3oBvsbuFLA4N4caXaHjZwGJg6jcHY+b8IH7lJ6Z4K6A0Zl4srgNF4HDZOIObHco4+KGVocNnAOa0EbgkFdzxJsfKrPfxofyl98QKdh3+0MhlcqzffsbV14iP0sZytcPmcCEzMONdfKP8AwtD+crkPG7t8Nipeeo/mhyGRhd5kLOodFG4d8p7unuBu4kHla6ywQR1oI4YWNiijaGMYwbBrQNgAPQF8q1YaVeOvXhjrwRtDWRRNDWtA7gAOgC5VhXXExm06oJERFqQREQEREBERAREQEREBERAREQEREBERAWfZYt8v2lgSebxYy+w9G3trG7+n6PR+0enQVn+V38v2lurdvFjL9CBv/wCKxvd6dvo6d2/oQaAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgLPcsB/pA6VPM0HxXzHm7dT/reM677d37fSP2aEs9y23+kFpXqebxXzGw5f/d4z0/8A7/sg0JERAREQEREBERAREQEREBERAREQEREBERAREQEVVyuq70mQsUsHRr23VXclizcndFEx+wPI3la4vcARv3Ab7bkggdLw7rD9Qwfrc35a9VOTYkxfRH+wtl3RUjw7rD9Qwfrc35aeHdYfqGD9bm/LWXZa98c4LLuvAesfZ7ZXT3siK+JtcK53ahxMdzTox8WYDu3lnsVnNex3tfflPtcbbDzg8H0BexfDusP1DB+tzflrIM97H+bUPsg8PxasY/DDM46r2JqCxIYp5mjlincez352NOw/4Wf1erste+OcFnpZFSPDusP1DB+tzflp4d1h+oYP1ub8tOy1745wWXdFSPDusP1DB+tzflp4d1h+oYP1ub8tOy1745wWXdFT6er8pRswsz2PqV6sz2xNuUbD5WxvcdmiRrmNLQSQOYE9SNwB1VwWjEwqsOf5ExYREWpBERAREQEREBERAREQEREBERBn2kTzNzZPf4Xu9fomcFPKA0h7jNf2xd/znKfXYxf7ys6xEUPhdXYnUOUzeOx9v2xcwtltS/H2b29jK6Nsobu4AO8x7Tu0kddu/cLSiYRF0TnMe3Nsw5uweFX13WxS7QdqYQ4NMnL38vM4Dfu3Ko7yKH07q7E6sOVGKt+2ji70mNt/o3s7KxGGl7POA325m9RuDv0KmFARdE5zHtzbMObsHhV9d1sUu0HamEODTJy9/LzOA37tyu8qK7xBO2kMgR3jsyPmPaN2WirOuIXvPyP0M+21aKsMo+FR9Z8qWWwREXPYiIiAiIgIiICIiAiIgIiICIiDPdIe4zX9sXf85yn1AaQ9xmv7Yu/5zlPrsYv95WdbAdK4jIcaNc8QrmW1fqLCx6ezzsNj8Tg8i6nHBFHFE8TSNb/vXSmRx/SczdgAAqDqjT99tz2R+rcZqnPYPJadteEKUONuGGu6aHFwSgyxgbSh3KGlr927dwBJK3zVnATQet9Qy5zMYET5SeNkVieC1PXFpjfctmbE9rZQB0HOHdOncpifhjpq1S1bUlxvNX1WHDMs7eUe2g6AQHrzbs/RtDfM5e7fv6rzZt0ec+M2rc9q6HUGT0nb1JVy+mdNQZPIWKuoDjsbSmfA6xHtXEb/AG08t6ua/ZnKGjmaSVN4bBxa69krpLOXshlq1y3oKDLvjo5SxXiMotQ7s5GPAMR5vOjI5XHqQStXznADQOpMhHcyWnmWZW1YqT2GzM2KeGMbRsmjDwyblHcZA4hc2S4GaJy1bTkNnESHxegFbGSxXrEc0EIDR2ZkbIHvZsxvmvLh07lM2R52s4G9itG8c9eYrWGc0/mNPanyt2pBXultCV8UcTxHLXPmSdofMPNueo229M6cln+KNPipqfJatzmjrmlYmNxuNxl51aCmW0I7XbTx90we+R24kBHK3Ybd61+97HHh1ks/NmbWm2WLs9w5CdslucwT2C7m7SSHtOzkIPdzNO2wA2AAXb1jwH0Jr7OuzGdwDLt+RjIp3NsTRMtMYd2NnjY9rJgPQJA4ejuTNkYxo3H+Unj/AKE1NlbeXoZLI8PKubmrUsnYrRib2xATGY2PAMW7vOjPmuPVwJXqVVLVfCjSutclh8hlsX2l7EbilZrWJa0kTSQSzeJzS5h5W+Y7dvTuVtWcRYV3iF7z8j9DPttWirOuIXvPyP0M+21aKplHwqPrPlSy2CIi57EREQEREBERAREQEREBERAREQZ7pD3Ga/ti7/nOU+oy7icrp7IXZsdj3ZijcmdZMMUzI5oZHDzwOdwa5pI37wQSe/0R3jPmDfbTbo3LvmLXOcWTVHMZy8m4e8TcrXESNIaSCRuQCGkjs1WxJz6ZjT3xHnLKYvpWRFCeFs98jMr61S/PTwtnvkZlfWqX56xzPmj7o6lk2ihPC2e+RmV9apfnqr3eMdbH8Qsfoexg78WqshUfdrY4z1eaSFm/M7m7blHc47E7kNJA2BTM+aPujqWaGihPC2e+RmV9apfnp4Wz3yMyvrVL89Mz5o+6OpZNooTwtnvkZlfWqX56eFs98jMr61S/PTM+aPujqWcHEL3n5H6GfbatFWb0HXtdyNo2cZLg6kcjZrMN6VgtSNZKQGtiYTsxzoyO0J2LQeUHmDhpC82UTEU00XvMXnRp126E6rCIi8LEREQEREBERAREQEREBERARfHODGlziGtA3JPcFAxvsansNkjkmpYiCc+5Ebm5SMxdCHbkti5nnu5XOdECD2Z/SB/M+Qs6lE1bEyy06ZjhlZnIuykilBk8+OEbkl3I07vLeUdowt5yHBstjcVTw8MkNGrFUikmksPbEwNDpJHl8jzt3uc5xJPpJK5q1aGlWir14mQQRMEccUTQ1rGgbBoA6AAdNlyoCIiAvzx4g+xl43Z72XVTWVbUWlaufnM2ZxcbrtoxQVKksEQgeRX9IsRggAg7v3Pw/ocs/wAhyzcfMByhpdX0zkec7nmaJLVHl6d2x7J3/L9KDQEREBERBFZvTtfMsfK176GTFeStXytVkftqq15aXdm57XDbmZG4tcC1xY3ma4DZdV+opcRekhzcUNKpLahq0L0cjntsukb0bIOUdi/nBYASWu5o9ncz+Rs+iAirIqy6Jqh1NktrT9WCxNNWHbWrjHc3aNEI3c57QC9oiAJADGsGwDVYoJ47MLJoniSJ7Q5rm9xB7ig5EREBERAREQEREBERARFxWp/ataabkfL2bC/kjG7nbDfYD0lBAWRDrK9cx7uSfCVHSU8lSuY/njuvdGxwY17/ADXRtDzzcrXAv2bzAxyMNkUDoOPk0XhHdrlJjJUjmL82f9d3e0OImA6B45ti0dARsOgCnkBERAREQFn3DgnVeodQa435qOREWOxDt9w+jAXkTjrttLLLM4Ee6jbCfg2/vUtqXiFlbGlMZM6PEV3hmfyELnNdy7B3tKJw7pHgjtHA7sjdsNnyNcy9V68VSCOCCNkMMTQxkcbQ1rGgbAADuAHoQciIiAiIgIiICgbtF+Bt2srRazsJ5PbGShc2WR7w2Pl54ms5vP5WsHKGnn5QOh6meRB1sdkauYx9W/RsR26VqJs8FiFwcyWNwDmuaR0IIIIPzrsqv4WWSjqTMYuR+UtMcGZGGzbiBrxtlLmmvFKO8sdEXlrurRMzYkbBtgQEREBERAREQERQuY1tp7T9oVsnnMdj7JHN2Nm0xj9vh5Sd9lnTRVXNqYvK2umkVW8qWjvlTiPXY/vVZ4l3+G3FfQmZ0ln9R4qbFZSDsZQy/G17SCHMe07+6a9rXDfpu0bgjotvZ8bgnlK5s7kjoXiBpeGWpow6k31NSdLSGKzuQidmJxCXDtnx83O8PjYJWv286NzXnvKvy/OL2FPBejwV9kTq+/qPN4uTH4ema2JyntlgiuGZw/SRnfbcRtcHDvaX7H5/enlS0d8qcR67H96dnxuCeUmbO5aUVW8qWjvlTiPXY/vTypaO+VOI9dj+9Oz43BPKTNnctKpuezuQ1Bl5NOabl7CSItGVzPLzNx7CN+yi3HK+y5vc07iJrhI8HeOOaIyXEarrPOs0vpbOVIHyx89vLxTxudCwj3FZrtxLMfh2LIx1dueVjr1g8HQ03i4cdjazatOHmLY2kklznFz3ucdy5znOc5znEuc5xJJJJWqqiqibVxZLWfMDgaGmMRWxmMritSrghjOYuJJJc5znOJc97nEuc9xLnOcSSSSVIIiwQREQEREBERAREQV22Q3iHihvmSX4u50i/wDLRyzVv998E55v0fwsE/wKxLHMn7IrhVX4jYqGXifhYnsxt9r4mZ2oMeHCaoNp/wBJ0nHXsx/V9sfAtjQEREBERAREQdLNXHY/D3rTAC+CCSVoPwtaSP8A4VR0lUjrYClIBzT2YmTzzO6vmkc0Fz3E9SST+zu7grPqr3sZj6nN9gqvaa97mK+qRfYC6GBowp+q7EkiIs0EREBERB1clja2WpyVrUYkif8APsWkdQ5pHVrgdiHDqCAR1Xf0HlJ81ovB3rT+1sz04nyybbc7uUbu29G567fOuJcPCz+TnTn1GL7KxxdODPdMeU9F2LSiIucgiIgIireutZwaKxAsOjFm5O/sqtXm5e1f3kk+hrRuSfgGw3JAOzDw6sWuKKIvMiZyeWo4So63kblehVb7qe1K2Ng+lziAqxLxh0dC8tOchcR03jjkeP3hpCw/J2rWdyPhDK2HX73XlkkHmxDf3Mbe5jeg6DqdgSSeq419bheg8OKfe1zfu/dy8Nx8s2jfjpvq8v4E8s2jfjpvq8v4FhyLd7Dybiq5x0LwwLiR7HTSeqfZjY7Ule5GeHuSk8MZVwikDY7DDu+Dl25v0r+U9BsA93wL3d5ZtG/HTfV5fwLDkT2Hk3FVzjoXhuPlm0b8dN9Xl/AvrOMmjXu28Nxt+d8MjR+8tWGonsPJuKrnHQvD0th9QYzUNd0+LyFXIRNPK51aVsgafgOx6H5ipBeWIDJSvR3qU8lG/H7i1XIa9vzHoQ4dB5rgQduoK3Xhvr4axpTV7bWQZemGieNnuZWnulYPQ0kEEd7SCOo2J4uXei6slp9ZRN6fGF16lyREXCRF6q97GY+pzfYKr2mve5ivqkX2ArDqr3sZj6nN9gqvaa97mK+qRfYC6OD8Gfr+F2O9YdIyCR0LGyzBpLGOdyhztugJ2O3X07FeduFvHrVGM4K5jWevMVFYr1L1uCrNj7oms3Z/CEleOsIexjazZ3JG13MeYDmIb1Xo1ee4eAWrpdA6l0FPkcLFgHX5svgctCZXXIbJvC5E2eItDOVry5pLXkkbdApN9iLA32Qk+lrWZqcQ9MHSFqhhZc/F7VyDchHZrRODZWteGM2la5zBybbHnGziFwV+N+dnsVcRqfR02jptQYu3awlmPJttOe+KHtXRShrGmGUMPOAC4ea7ztwo3M8CNUcXMhm73EW5hqLp9O2NP0KmnnSzRw9u5rpLL3ytYS7eOPZgGwAO5Peu7juFGutX6q01kdf38EyppqnahqMwJme+5YngNd08vaNaIwIy/Zjebq8+d0Cn8hB6S445jTXDDgtjIsW7VeqNV4RkzZ8rlhUZI+KCJ0nNO9ry+V5kGzdiXbOJI2XoTHzT2aFaazWNOzJE18tcvD+yeQCWcw6HY7jcdDsvP1jgtr53BDA8PbFHQuoq+PqSY6STK+2Wjs2NayrYj5WOLJmgOLgPTtyvC2zQen7elNE4DC38lJmL2OoQVJ8hNvz2XsjDXSHck7uIJ6knr1JVpvtE6uHhZ/Jzpz6jF9lcy4eFn8nOnPqMX2VcX4M/WPKV2LSiIucgiIgLAuLOSdkuIliBziYsbVjgjae5rpP0jyPpHZA/8AW+rAuLONdjOIc87mkRZOrHPG89znx/o3gfQOyP98Lvehc3tWnXabeH4uuyVWRdfI34sXRntziUwwsL3iGF8r9h8DGAucfmAJVVHFvT5/os5/07kPyF9vViUUaKpiGtcnODWkkgAdST6FidL2UGHu5Co9kGPOEt22VIp2ZqB17zn8jZHUx54YXEH3RcGnctCvbOKOn7721exzR7c9ns/T99jTv06uMAAHXvJ2Ve4faE1doOLH6fa/T97TNCRzYr0zZRfdX3JawsA5OYbgc/N3D3O68mJXXXVT6mrRttad1vyrin43X68OUyUmli3T2LzMmHuX/CDe0aW2BCJWRcnnN3c0kFzSNyBzAbnr8TOKGYmw+uaOl8JNcgwtGeK7mm3xWNWcwF+0I2Je+NrmuOxbsegO658jwmy9vh1rDAMs0hczGdmydd7nv7NsT7bJgHnk3DuVpGwBG/p9K4NQ8NNYV/HnH6cs4WTCaqE00gybpmTVbEsAikLeRpD2u5Wnrtsfh9OiqcozbTfTHdfb+ho+i55bWjsFNNI+aaShA98kji5znGNpJJPeSfSphUXH63xWjcZQwd9uUku4+tDWmdTwt6eIubG0EtkZCWuHzgrn8runj/AEWd/wCnch+QvbTi4cRETVF/qi5qW0VknYfXuAsscWiac0pQP57JWkAf84jd/dVbwuarZ/HR3agsNgeSALVaWvJ0Ox3ZI1rh3ekdVZNE412Z17gKzG8zYJzdlI/mMjaSD/zmMf3lMomicCuatVp8mVOt6QREX5gqL1V72Mx9Tm+wVXtNe9zFfVIvsBWnM03ZHEXqjCA+eCSIE+guaR/9qoaSuR2MDThB5LNaFkFiB3R8MjWgOY4HqCD+8bEdCF0MDThTHeuxMIiLNBERAREQFw8LP5OdOfUYvsrjyeUrYio+zalEcbegHe57j0DWtHVziSAGjckkAdSpDQmLnwmjMJRtM7OzBTiZLHvvyP5Ru3f07Hpv8yxxdGDPfMeU9V2J1ERc5BERAVc1zoyDWuHFZ8grW4X9rVtcvMYn93UdN2kbgjfuPQggEWNFsw8SrCriuibTA8u5Wpa0/kPaGWrnH3OvK153ZKP60b+547u7qNxuGnouNenMli6WZqPq36kF6s/3UNmJsjD9LSCFWJeEGjpXFxwNdpPXaNz2D9wIC+twvTmHNPvaJv3fstDCkW5eRvRvxHF/Fk/Enkb0b8RxfxZPxLd7cybhq5R1LQw1FuXkb0b8RxfxZPxJ5G9G/EcX8WT8Se3Mm4auUdS0MNRbl5G9G/EcX8WT8S+s4O6NY7fwFA75nve4fuLtk9uZNw1co6lo3sLrCXIXmUaMEl++/wBzVrgOefnPXZo6jznEAb9St24caCGjaM09p7J8vb5TPIz3EbR7mJh7y0Ek7nq4knYDZrbFiMFjcBXMGMoVsfCTuWVomxhx+E7DqfnK764mXelKsrp9XRFqfGV1ahERcNBQuY0Vp/UNgWMpg8bkZwOUS2qkcjwPg3cCdlNIsqa6qJvTNpNSreSvRnyTwn+HxfhTyV6M+SeE/wAPi/CrSi3doxuOecred6reSvRnyTwn+HxfhTyV6M+SeE/w+L8KtKJ2jG455yXneq3kr0Z8k8J/h8X4U8lejPknhP8AD4vwq0onaMbjnnJed6DxWhtOYKy2zjsBjKFhu/LNWqRxvbv37EDcbqcRFqqrqrm9U3TWIiLAEREBERAREQEREBERAREQEREBERB//9k=",
      "text/plain": [
       "<IPython.core.display.Image object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from IPython.display import Image, display\n",
    "\n",
    "try:\n",
    "    display(Image(graph.get_graph().draw_mermaid_png()))\n",
    "except Exception:\n",
    "    # This requires some extra dependencies and is optional\n",
    "    pass"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Assistant: \n",
      "Assistant: [{\"url\": \"https://langchain-ai.github.io/langgraph/\", \"content\": \"LangGraph is a framework for creating stateful, multi-actor applications with LLMs, using cycles, controllability, and persistence. Learn how to use LangGraph with LangChain, LangSmith, and Anthropic tools to build agent and multi-agent workflows.\"}, {\"url\": \"https://langchain-ai.github.io/langgraph/tutorials/\", \"content\": \"LangGraph is a framework for building language agents as graphs. Learn how to use LangGraph to create chatbots, code assistants, planning agents, reflection agents, and more with these notebooks.\"}]\n",
      "Assistant: LangGraph is a framework designed for creating stateful, multi-actor applications using large language models (LLMs). It emphasizes the use of cycles, controllability, and persistence to build complex workflows. LangGraph can be integrated with tools like LangChain, LangSmith, and Anthropic to develop agent and multi-agent workflows. It is particularly useful for building language agents as graphs, which can include applications such as chatbots, code assistants, planning agents, and reflection agents. You can find more information and tutorials on how to use LangGraph on their [official website](https://langchain-ai.github.io/langgraph/).\n"
     ]
    }
   ],
   "source": [
    "def stream_graph_updates(user_input: str):\n",
    "    for event in graph.stream({\"messages\": [(\"user\", user_input)]}):\n",
    "        for value in event.values():\n",
    "            print(\"Assistant:\", value[\"messages\"][-1].content)\n",
    "\n",
    "\n",
    "user_input = \"What do you know about LangGraph?\"\n",
    "try:\n",
    "    stream_graph_updates(user_input)\n",
    "except Exception as e:\n",
    "    print(f\"An error occurred: {e}\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}