File size: 9,311 Bytes
252375c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "%%capture --no-stderr\n",
    "%pip install -U tavily-python langchain_community"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "True"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import os\n",
    "from dotenv import load_dotenv\n",
    "\n",
    "load_dotenv()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "openai_api_key = os.getenv(\"OPENAI_API_KEY\")\n",
    "model = os.getenv(\"OPENAI_MODEL\", \"gpt-4o\")\n",
    "temperature = float(os.getenv(\"OPENAI_TEMPERATURE\", 0))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_community.tools.tavily_search import TavilySearchResults\n",
    "\n",
    "tool = TavilySearchResults(max_results=2)\n",
    "tools = [tool]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<langgraph.graph.state.StateGraph at 0x10b077740>"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from typing import Annotated\n",
    "from langchain_openai import ChatOpenAI as Chat\n",
    "\n",
    "from langchain_community.tools.tavily_search import TavilySearchResults\n",
    "from typing_extensions import TypedDict\n",
    "\n",
    "from langgraph.checkpoint.memory import MemorySaver\n",
    "from langgraph.graph import StateGraph, START\n",
    "from langgraph.graph.message import add_messages\n",
    "from langgraph.prebuilt import ToolNode, tools_condition\n",
    "\n",
    "memory = MemorySaver()\n",
    "\n",
    "\n",
    "class State(TypedDict):\n",
    "    messages: Annotated[list, add_messages]\n",
    "\n",
    "\n",
    "graph_builder = StateGraph(State)\n",
    "\n",
    "\n",
    "tool = TavilySearchResults(max_results=2)\n",
    "tools = [tool]\n",
    "llm = Chat(\n",
    "    openai_api_key=openai_api_key,\n",
    "    model=model,\n",
    "    temperature=temperature\n",
    ")\n",
    "llm_with_tools = llm.bind_tools(tools)\n",
    "\n",
    "\n",
    "def chatbot(state: State):\n",
    "    return {\"messages\": [llm_with_tools.invoke(state[\"messages\"])]}\n",
    "\n",
    "\n",
    "graph_builder.add_node(\"chatbot\", chatbot)\n",
    "\n",
    "tool_node = ToolNode(tools=[tool])\n",
    "graph_builder.add_node(\"tools\", tool_node)\n",
    "\n",
    "graph_builder.add_conditional_edges(\n",
    "    \"chatbot\",\n",
    "    tools_condition,\n",
    ")\n",
    "graph_builder.add_edge(\"tools\", \"chatbot\")\n",
    "graph_builder.add_edge(START, \"chatbot\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "graph = graph_builder.compile(\n",
    "    checkpointer=memory,\n",
    "    # This is new!\n",
    "    interrupt_before=[\"tools\"],\n",
    "    # Note: can also interrupt __after__ tools, if desired.\n",
    "    # interrupt_after=[\"tools\"]\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "================================\u001b[1m Human Message \u001b[0m=================================\n",
      "\n",
      "I'm learning LangGraph. Could you do some research on it for me?\n",
      "==================================\u001b[1m Ai Message \u001b[0m==================================\n",
      "Tool Calls:\n",
      "  tavily_search_results_json (call_rrzd6xIpsEpb8KbDwRtjJGSm)\n",
      " Call ID: call_rrzd6xIpsEpb8KbDwRtjJGSm\n",
      "  Args:\n",
      "    query: LangGraph programming language\n"
     ]
    }
   ],
   "source": [
    "user_input = \"I'm learning LangGraph. Could you do some research on it for me?\"\n",
    "config = {\"configurable\": {\"thread_id\": \"1\"}}\n",
    "# The config is the **second positional argument** to stream() or invoke()!\n",
    "events = graph.stream(\n",
    "    {\"messages\": [(\"user\", user_input)]}, config, stream_mode=\"values\"\n",
    ")\n",
    "for event in events:\n",
    "    if \"messages\" in event:\n",
    "        event[\"messages\"][-1].pretty_print()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "('tools',)"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "snapshot = graph.get_state(config)\n",
    "snapshot.next"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[{'name': 'tavily_search_results_json',\n",
       "  'args': {'query': 'LangGraph programming language'},\n",
       "  'id': 'call_rrzd6xIpsEpb8KbDwRtjJGSm',\n",
       "  'type': 'tool_call'}]"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "existing_message = snapshot.values[\"messages\"][-1]\n",
    "existing_message.tool_calls"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "==================================\u001b[1m Ai Message \u001b[0m==================================\n",
      "Tool Calls:\n",
      "  tavily_search_results_json (call_rrzd6xIpsEpb8KbDwRtjJGSm)\n",
      " Call ID: call_rrzd6xIpsEpb8KbDwRtjJGSm\n",
      "  Args:\n",
      "    query: LangGraph programming language\n",
      "=================================\u001b[1m Tool Message \u001b[0m=================================\n",
      "Name: tavily_search_results_json\n",
      "\n",
      "[{\"url\": \"https://www.datacamp.com/tutorial/langgraph-tutorial\", \"content\": \"LangGraph can be used to build a wide range of applications. Chatbots. LangGraph is ideal for developing sophisticated chatbots that can handle a wide array of user requests. By leveraging multiple LLM agents, these chatbots can process natural language queries, provide accurate responses, and seamlessly switch between different conversation\"}, {\"url\": \"https://github.com/langchain-ai/langgraph\", \"content\": \"Overview. LangGraph is a library for building stateful, multi-actor applications with LLMs, used to create agent and multi-agent workflows. Compared to other LLM frameworks, it offers these core benefits: cycles, controllability, and persistence. LangGraph allows you to define flows that involve cycles, essential for most agentic architectures\"}]\n",
      "==================================\u001b[1m Ai Message \u001b[0m==================================\n",
      "\n",
      "LangGraph is a library designed for building stateful, multi-actor applications using large language models (LLMs). It is particularly useful for creating agent and multi-agent workflows. Here are some key features and applications of LangGraph:\n",
      "\n",
      "1. **Applications**: LangGraph can be used to develop a wide range of applications, including sophisticated chatbots. These chatbots can handle various user requests, process natural language queries, provide accurate responses, and switch seamlessly between different conversation topics.\n",
      "\n",
      "2. **Core Benefits**:\n",
      "   - **Cycles**: LangGraph supports the creation of workflows that involve cycles, which are essential for most agentic architectures.\n",
      "   - **Controllability**: It offers a high degree of control over the workflows, allowing developers to fine-tune the behavior of the agents.\n",
      "   - **Persistence**: LangGraph provides mechanisms to maintain the state of applications over time, which is crucial for building long-running applications.\n",
      "\n",
      "For more detailed information, you can explore resources like the [LangGraph GitHub repository](https://github.com/langchain-ai/langgraph) or tutorials available on platforms like [DataCamp](https://www.datacamp.com/tutorial/langgraph-tutorial).\n"
     ]
    }
   ],
   "source": [
    "# `None` will append nothing new to the current state, letting it resume as if it had never been interrupted\n",
    "events = graph.stream(None, config, stream_mode=\"values\")\n",
    "for event in events:\n",
    "    if \"messages\" in event:\n",
    "        event[\"messages\"][-1].pretty_print()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}