File size: 820 Bytes
96b496e
 
 
8b45d37
96b496e
8b45d37
 
 
96b496e
8b45d37
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import gradio as gr
from transformers import pipeline

nlp = pipeline("text-classification")

def classify_text(input_text):
    result = nlp(input_text)[0]
    return result["label"], result["score"]

with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            text_input = gr.Textbox(label="Enter text to classify")
            classify_btn = gr.Button(value="Classify")
        with gr.Column():
            label_output = gr.Textbox(label="Predicted label")
            score_output = gr.Textbox(label="Score")

    classify_btn.click(classify_text, inputs=text_input, outputs=[label_output, score_output], api_name="classify-text")
    examples = gr.Examples(examples=["This is a positive review.", "This is a negative review."],
                           inputs=[text_input])

demo.launch()