File size: 10,871 Bytes
a8c8bc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

"""Equivariance metrics (EQ-T, EQ-T_frac, and EQ-R) from the paper
"Alias-Free Generative Adversarial Networks"."""

import copy
import numpy as np
import torch
import torch.fft
from torch_utils.ops import upfirdn2d
from . import metric_utils

#----------------------------------------------------------------------------
# Utilities.

def sinc(x):
    y = (x * np.pi).abs()
    z = torch.sin(y) / y.clamp(1e-30, float('inf'))
    return torch.where(y < 1e-30, torch.ones_like(x), z)

def lanczos_window(x, a):
    x = x.abs() / a
    return torch.where(x < 1, sinc(x), torch.zeros_like(x))

def rotation_matrix(angle):
    angle = torch.as_tensor(angle).to(torch.float32)
    mat = torch.eye(3, device=angle.device)
    mat[0, 0] = angle.cos()
    mat[0, 1] = angle.sin()
    mat[1, 0] = -angle.sin()
    mat[1, 1] = angle.cos()
    return mat

#----------------------------------------------------------------------------
# Apply integer translation to a batch of 2D images. Corresponds to the
# operator T_x in Appendix E.1.

def apply_integer_translation(x, tx, ty):
    _N, _C, H, W = x.shape
    tx = torch.as_tensor(tx * W).to(dtype=torch.float32, device=x.device)
    ty = torch.as_tensor(ty * H).to(dtype=torch.float32, device=x.device)
    ix = tx.round().to(torch.int64)
    iy = ty.round().to(torch.int64)

    z = torch.zeros_like(x)
    m = torch.zeros_like(x)
    if abs(ix) < W and abs(iy) < H:
        y = x[:, :, max(-iy,0) : H+min(-iy,0), max(-ix,0) : W+min(-ix,0)]
        z[:, :, max(iy,0) : H+min(iy,0), max(ix,0) : W+min(ix,0)] = y
        m[:, :, max(iy,0) : H+min(iy,0), max(ix,0) : W+min(ix,0)] = 1
    return z, m

#----------------------------------------------------------------------------
# Apply integer translation to a batch of 2D images. Corresponds to the
# operator T_x in Appendix E.2.

def apply_fractional_translation(x, tx, ty, a=3):
    _N, _C, H, W = x.shape
    tx = torch.as_tensor(tx * W).to(dtype=torch.float32, device=x.device)
    ty = torch.as_tensor(ty * H).to(dtype=torch.float32, device=x.device)
    ix = tx.floor().to(torch.int64)
    iy = ty.floor().to(torch.int64)
    fx = tx - ix
    fy = ty - iy
    b = a - 1

    z = torch.zeros_like(x)
    zx0 = max(ix - b, 0)
    zy0 = max(iy - b, 0)
    zx1 = min(ix + a, 0) + W
    zy1 = min(iy + a, 0) + H
    if zx0 < zx1 and zy0 < zy1:
        taps = torch.arange(a * 2, device=x.device) - b
        filter_x = (sinc(taps - fx) * sinc((taps - fx) / a)).unsqueeze(0)
        filter_y = (sinc(taps - fy) * sinc((taps - fy) / a)).unsqueeze(1)
        y = x
        y = upfirdn2d.filter2d(y, filter_x / filter_x.sum(), padding=[b,a,0,0])
        y = upfirdn2d.filter2d(y, filter_y / filter_y.sum(), padding=[0,0,b,a])
        y = y[:, :, max(b-iy,0) : H+b+a+min(-iy-a,0), max(b-ix,0) : W+b+a+min(-ix-a,0)]
        z[:, :, zy0:zy1, zx0:zx1] = y

    m = torch.zeros_like(x)
    mx0 = max(ix + a, 0)
    my0 = max(iy + a, 0)
    mx1 = min(ix - b, 0) + W
    my1 = min(iy - b, 0) + H
    if mx0 < mx1 and my0 < my1:
        m[:, :, my0:my1, mx0:mx1] = 1
    return z, m

#----------------------------------------------------------------------------
# Construct an oriented low-pass filter that applies the appropriate
# bandlimit with respect to the input and output of the given affine 2D
# image transformation.

def construct_affine_bandlimit_filter(mat, a=3, amax=16, aflt=64, up=4, cutoff_in=1, cutoff_out=1):
    assert a <= amax < aflt
    mat = torch.as_tensor(mat).to(torch.float32)

    # Construct 2D filter taps in input & output coordinate spaces.
    taps = ((torch.arange(aflt * up * 2 - 1, device=mat.device) + 1) / up - aflt).roll(1 - aflt * up)
    yi, xi = torch.meshgrid(taps, taps)
    xo, yo = (torch.stack([xi, yi], dim=2) @ mat[:2, :2].t()).unbind(2)

    # Convolution of two oriented 2D sinc filters.
    fi = sinc(xi * cutoff_in) * sinc(yi * cutoff_in)
    fo = sinc(xo * cutoff_out) * sinc(yo * cutoff_out)
    f = torch.fft.ifftn(torch.fft.fftn(fi) * torch.fft.fftn(fo)).real

    # Convolution of two oriented 2D Lanczos windows.
    wi = lanczos_window(xi, a) * lanczos_window(yi, a)
    wo = lanczos_window(xo, a) * lanczos_window(yo, a)
    w = torch.fft.ifftn(torch.fft.fftn(wi) * torch.fft.fftn(wo)).real

    # Construct windowed FIR filter.
    f = f * w

    # Finalize.
    c = (aflt - amax) * up
    f = f.roll([aflt * up - 1] * 2, dims=[0,1])[c:-c, c:-c]
    f = torch.nn.functional.pad(f, [0, 1, 0, 1]).reshape(amax * 2, up, amax * 2, up)
    f = f / f.sum([0,2], keepdim=True) / (up ** 2)
    f = f.reshape(amax * 2 * up, amax * 2 * up)[:-1, :-1]
    return f

#----------------------------------------------------------------------------
# Apply the given affine transformation to a batch of 2D images.

def apply_affine_transformation(x, mat, up=4, **filter_kwargs):
    _N, _C, H, W = x.shape
    mat = torch.as_tensor(mat).to(dtype=torch.float32, device=x.device)

    # Construct filter.
    f = construct_affine_bandlimit_filter(mat, up=up, **filter_kwargs)
    assert f.ndim == 2 and f.shape[0] == f.shape[1] and f.shape[0] % 2 == 1
    p = f.shape[0] // 2

    # Construct sampling grid.
    theta = mat.inverse()
    theta[:2, 2] *= 2
    theta[0, 2] += 1 / up / W
    theta[1, 2] += 1 / up / H
    theta[0, :] *= W / (W + p / up * 2)
    theta[1, :] *= H / (H + p / up * 2)
    theta = theta[:2, :3].unsqueeze(0).repeat([x.shape[0], 1, 1])
    g = torch.nn.functional.affine_grid(theta, x.shape, align_corners=False)

    # Resample image.
    y = upfirdn2d.upsample2d(x=x, f=f, up=up, padding=p)
    z = torch.nn.functional.grid_sample(y, g, mode='bilinear', padding_mode='zeros', align_corners=False)

    # Form mask.
    m = torch.zeros_like(y)
    c = p * 2 + 1
    m[:, :, c:-c, c:-c] = 1
    m = torch.nn.functional.grid_sample(m, g, mode='nearest', padding_mode='zeros', align_corners=False)
    return z, m

#----------------------------------------------------------------------------
# Apply fractional rotation to a batch of 2D images. Corresponds to the
# operator R_\alpha in Appendix E.3.

def apply_fractional_rotation(x, angle, a=3, **filter_kwargs):
    angle = torch.as_tensor(angle).to(dtype=torch.float32, device=x.device)
    mat = rotation_matrix(angle)
    return apply_affine_transformation(x, mat, a=a, amax=a*2, **filter_kwargs)

#----------------------------------------------------------------------------
# Modify the frequency content of a batch of 2D images as if they had undergo
# fractional rotation -- but without actually rotating them. Corresponds to
# the operator R^*_\alpha in Appendix E.3.

def apply_fractional_pseudo_rotation(x, angle, a=3, **filter_kwargs):
    angle = torch.as_tensor(angle).to(dtype=torch.float32, device=x.device)
    mat = rotation_matrix(-angle)
    f = construct_affine_bandlimit_filter(mat, a=a, amax=a*2, up=1, **filter_kwargs)
    y = upfirdn2d.filter2d(x=x, f=f)
    m = torch.zeros_like(y)
    c = f.shape[0] // 2
    m[:, :, c:-c, c:-c] = 1
    return y, m

#----------------------------------------------------------------------------
# Compute the selected equivariance metrics for the given generator.

def compute_equivariance_metrics(opts, num_samples, batch_size, translate_max=0.125, rotate_max=1, compute_eqt_int=False, compute_eqt_frac=False, compute_eqr=False):
    assert compute_eqt_int or compute_eqt_frac or compute_eqr

    # Setup generator and labels.
    G = copy.deepcopy(opts.G).eval().requires_grad_(False).to(opts.device)
    I = torch.eye(3, device=opts.device)
    M = getattr(getattr(getattr(G, 'synthesis', None), 'input', None), 'transform', None)
    if M is None:
        raise ValueError('Cannot compute equivariance metrics; the given generator does not support user-specified image transformations')
    c_iter = metric_utils.iterate_random_labels(opts=opts, batch_size=batch_size)

    # Sampling loop.
    sums = None
    progress = opts.progress.sub(tag='eq sampling', num_items=num_samples)
    for batch_start in range(0, num_samples, batch_size * opts.num_gpus):
        progress.update(batch_start)
        s = []

        # Randomize noise buffers, if any.
        for name, buf in G.named_buffers():
            if name.endswith('.noise_const'):
                buf.copy_(torch.randn_like(buf))

        # Run mapping network.
        z = torch.randn([batch_size, G.z_dim], device=opts.device)
        c = next(c_iter)
        ws = G.mapping(z=z, c=c)

        # Generate reference image.
        M[:] = I
        orig = G.synthesis(ws=ws, noise_mode='const', **opts.G_kwargs)

        # Integer translation (EQ-T).
        if compute_eqt_int:
            t = (torch.rand(2, device=opts.device) * 2 - 1) * translate_max
            t = (t * G.img_resolution).round() / G.img_resolution
            M[:] = I
            M[:2, 2] = -t
            img = G.synthesis(ws=ws, noise_mode='const', **opts.G_kwargs)
            ref, mask = apply_integer_translation(orig, t[0], t[1])
            s += [(ref - img).square() * mask, mask]

        # Fractional translation (EQ-T_frac).
        if compute_eqt_frac:
            t = (torch.rand(2, device=opts.device) * 2 - 1) * translate_max
            M[:] = I
            M[:2, 2] = -t
            img = G.synthesis(ws=ws, noise_mode='const', **opts.G_kwargs)
            ref, mask = apply_fractional_translation(orig, t[0], t[1])
            s += [(ref - img).square() * mask, mask]

        # Rotation (EQ-R).
        if compute_eqr:
            angle = (torch.rand([], device=opts.device) * 2 - 1) * (rotate_max * np.pi)
            M[:] = rotation_matrix(-angle)
            img = G.synthesis(ws=ws, noise_mode='const', **opts.G_kwargs)
            ref, ref_mask = apply_fractional_rotation(orig, angle)
            pseudo, pseudo_mask = apply_fractional_pseudo_rotation(img, angle)
            mask = ref_mask * pseudo_mask
            s += [(ref - pseudo).square() * mask, mask]

        # Accumulate results.
        s = torch.stack([x.to(torch.float64).sum() for x in s])
        sums = sums + s if sums is not None else s
    progress.update(num_samples)

    # Compute PSNRs.
    if opts.num_gpus > 1:
        torch.distributed.all_reduce(sums)
    sums = sums.cpu()
    mses = sums[0::2] / sums[1::2]
    psnrs = np.log10(2) * 20 - mses.log10() * 10
    psnrs = tuple(psnrs.numpy())
    return psnrs[0] if len(psnrs) == 1 else psnrs

#----------------------------------------------------------------------------