File size: 5,717 Bytes
e86b33b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

import os
import time
import json
import torch
import dnnlib

from . import metric_utils
from . import frechet_inception_distance
from . import kernel_inception_distance
from . import precision_recall
from . import perceptual_path_length
from . import inception_score

#----------------------------------------------------------------------------

_metric_dict = dict() # name => fn

def register_metric(fn):
    assert callable(fn)
    _metric_dict[fn.__name__] = fn
    return fn

def is_valid_metric(metric):
    return metric in _metric_dict

def list_valid_metrics():
    return list(_metric_dict.keys())

#----------------------------------------------------------------------------

def calc_metric(metric, **kwargs): # See metric_utils.MetricOptions for the full list of arguments.
    assert is_valid_metric(metric)
    opts = metric_utils.MetricOptions(**kwargs)

    # Calculate.
    start_time = time.time()
    results = _metric_dict[metric](opts)
    total_time = time.time() - start_time

    # Broadcast results.
    for key, value in list(results.items()):
        if opts.num_gpus > 1:
            value = torch.as_tensor(value, dtype=torch.float64, device=opts.device)
            torch.distributed.broadcast(tensor=value, src=0)
            value = float(value.cpu())
        results[key] = value

    # Decorate with metadata.
    return dnnlib.EasyDict(
        results         = dnnlib.EasyDict(results),
        metric          = metric,
        total_time      = total_time,
        total_time_str  = dnnlib.util.format_time(total_time),
        num_gpus        = opts.num_gpus,
    )

#----------------------------------------------------------------------------

def report_metric(result_dict, run_dir=None, snapshot_pkl=None):
    metric = result_dict['metric']
    assert is_valid_metric(metric)
    if run_dir is not None and snapshot_pkl is not None:
        snapshot_pkl = os.path.relpath(snapshot_pkl, run_dir)

    jsonl_line = json.dumps(dict(result_dict, snapshot_pkl=snapshot_pkl, timestamp=time.time()))
    print(jsonl_line)
    if run_dir is not None and os.path.isdir(run_dir):
        with open(os.path.join(run_dir, f'metric-{metric}.jsonl'), 'at') as f:
            f.write(jsonl_line + '\n')

#----------------------------------------------------------------------------
# Primary metrics.

@register_metric
def fid50k_full(opts):
    opts.dataset_kwargs.update(max_size=None, xflip=False)
    fid = frechet_inception_distance.compute_fid(opts, max_real=None, num_gen=50000)
    return dict(fid50k_full=fid)

@register_metric
def kid50k_full(opts):
    opts.dataset_kwargs.update(max_size=None, xflip=False)
    kid = kernel_inception_distance.compute_kid(opts, max_real=1000000, num_gen=50000, num_subsets=100, max_subset_size=1000)
    return dict(kid50k_full=kid)

@register_metric
def pr50k3_full(opts):
    opts.dataset_kwargs.update(max_size=None, xflip=False)
    precision, recall = precision_recall.compute_pr(opts, max_real=200000, num_gen=50000, nhood_size=3, row_batch_size=10000, col_batch_size=10000)
    return dict(pr50k3_full_precision=precision, pr50k3_full_recall=recall)

@register_metric
def ppl2_wend(opts):
    ppl = perceptual_path_length.compute_ppl(opts, num_samples=50000, epsilon=1e-4, space='w', sampling='end', crop=False, batch_size=2)
    return dict(ppl2_wend=ppl)

@register_metric
def is50k(opts):
    opts.dataset_kwargs.update(max_size=None, xflip=False)
    mean, std = inception_score.compute_is(opts, num_gen=50000, num_splits=10)
    return dict(is50k_mean=mean, is50k_std=std)

#----------------------------------------------------------------------------
# Legacy metrics.

@register_metric
def fid50k(opts):
    opts.dataset_kwargs.update(max_size=None)
    fid = frechet_inception_distance.compute_fid(opts, max_real=50000, num_gen=50000)
    return dict(fid50k=fid)

@register_metric
def kid50k(opts):
    opts.dataset_kwargs.update(max_size=None)
    kid = kernel_inception_distance.compute_kid(opts, max_real=50000, num_gen=50000, num_subsets=100, max_subset_size=1000)
    return dict(kid50k=kid)

@register_metric
def pr50k3(opts):
    opts.dataset_kwargs.update(max_size=None)
    precision, recall = precision_recall.compute_pr(opts, max_real=50000, num_gen=50000, nhood_size=3, row_batch_size=10000, col_batch_size=10000)
    return dict(pr50k3_precision=precision, pr50k3_recall=recall)

@register_metric
def ppl_zfull(opts):
    ppl = perceptual_path_length.compute_ppl(opts, num_samples=50000, epsilon=1e-4, space='z', sampling='full', crop=True, batch_size=2)
    return dict(ppl_zfull=ppl)

@register_metric
def ppl_wfull(opts):
    ppl = perceptual_path_length.compute_ppl(opts, num_samples=50000, epsilon=1e-4, space='w', sampling='full', crop=True, batch_size=2)
    return dict(ppl_wfull=ppl)

@register_metric
def ppl_zend(opts):
    ppl = perceptual_path_length.compute_ppl(opts, num_samples=50000, epsilon=1e-4, space='z', sampling='end', crop=True, batch_size=2)
    return dict(ppl_zend=ppl)

@register_metric
def ppl_wend(opts):
    ppl = perceptual_path_length.compute_ppl(opts, num_samples=50000, epsilon=1e-4, space='w', sampling='end', crop=True, batch_size=2)
    return dict(ppl_wend=ppl)

#----------------------------------------------------------------------------