File size: 10,380 Bytes
363b2a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import torch
import argparse

from nerf.provider import NeRFDataset
from nerf.utils import *

import gradio as gr
import gc

print(f'[INFO] loading options..')

# fake config object, this should not be used in CMD, only allow change from gradio UI.
parser = argparse.ArgumentParser()
parser.add_argument('--text', default=None, help="text prompt")
# parser.add_argument('-O', action='store_true', help="equals --fp16 --cuda_ray --dir_text")
# parser.add_argument('-O2', action='store_true', help="equals --fp16 --dir_text")
parser.add_argument('--test', action='store_true', help="test mode")
parser.add_argument('--save_mesh', action='store_true', help="export an obj mesh with texture")
parser.add_argument('--eval_interval', type=int, default=10, help="evaluate on the valid set every interval epochs")
parser.add_argument('--workspace', type=str, default='trial_gradio')
parser.add_argument('--guidance', type=str, default='stable-diffusion', help='choose from [stable-diffusion, clip]')
parser.add_argument('--seed', type=int, default=0)

### training options
parser.add_argument('--iters', type=int, default=10000, help="training iters")
parser.add_argument('--lr', type=float, default=1e-3, help="initial learning rate")
parser.add_argument('--ckpt', type=str, default='latest')
parser.add_argument('--cuda_ray', action='store_true', help="use CUDA raymarching instead of pytorch")
parser.add_argument('--max_steps', type=int, default=1024, help="max num steps sampled per ray (only valid when using --cuda_ray)")
parser.add_argument('--num_steps', type=int, default=64, help="num steps sampled per ray (only valid when not using --cuda_ray)")
parser.add_argument('--upsample_steps', type=int, default=64, help="num steps up-sampled per ray (only valid when not using --cuda_ray)")
parser.add_argument('--update_extra_interval', type=int, default=16, help="iter interval to update extra status (only valid when using --cuda_ray)")
parser.add_argument('--max_ray_batch', type=int, default=4096, help="batch size of rays at inference to avoid OOM (only valid when not using --cuda_ray)")
parser.add_argument('--albedo_iters', type=int, default=1000, help="training iters that only use albedo shading")
# model options
parser.add_argument('--bg_radius', type=float, default=1.4, help="if positive, use a background model at sphere(bg_radius)")
parser.add_argument('--density_thresh', type=float, default=10, help="threshold for density grid to be occupied")
# network backbone
parser.add_argument('--fp16', action='store_true', help="use amp mixed precision training")
parser.add_argument('--backbone', type=str, default='grid', help="nerf backbone, choose from [grid, tcnn, vanilla]")
# rendering resolution in training, decrease this if CUDA OOM.
parser.add_argument('--w', type=int, default=64, help="render width for NeRF in training")
parser.add_argument('--h', type=int, default=64, help="render height for NeRF in training")
parser.add_argument('--jitter_pose', action='store_true', help="add jitters to the randomly sampled camera poses")

### dataset options
parser.add_argument('--bound', type=float, default=1, help="assume the scene is bounded in box(-bound, bound)")
parser.add_argument('--dt_gamma', type=float, default=0, help="dt_gamma (>=0) for adaptive ray marching. set to 0 to disable, >0 to accelerate rendering (but usually with worse quality)")
parser.add_argument('--min_near', type=float, default=0.1, help="minimum near distance for camera")
parser.add_argument('--radius_range', type=float, nargs='*', default=[1.0, 1.5], help="training camera radius range")
parser.add_argument('--fovy_range', type=float, nargs='*', default=[40, 70], help="training camera fovy range")
parser.add_argument('--dir_text', action='store_true', help="direction-encode the text prompt, by appending front/side/back/overhead view")
parser.add_argument('--angle_overhead', type=float, default=30, help="[0, angle_overhead] is the overhead region")
parser.add_argument('--angle_front', type=float, default=60, help="[0, angle_front] is the front region, [180, 180+angle_front] the back region, otherwise the side region.")

parser.add_argument('--lambda_entropy', type=float, default=1e-4, help="loss scale for alpha entropy")
parser.add_argument('--lambda_opacity', type=float, default=0, help="loss scale for alpha value")
parser.add_argument('--lambda_orient', type=float, default=1e-2, help="loss scale for orientation")

### GUI options
parser.add_argument('--gui', action='store_true', help="start a GUI")
parser.add_argument('--W', type=int, default=800, help="GUI width")
parser.add_argument('--H', type=int, default=800, help="GUI height")
parser.add_argument('--radius', type=float, default=3, help="default GUI camera radius from center")
parser.add_argument('--fovy', type=float, default=60, help="default GUI camera fovy")
parser.add_argument('--light_theta', type=float, default=60, help="default GUI light direction in [0, 180], corresponding to elevation [90, -90]")
parser.add_argument('--light_phi', type=float, default=0, help="default GUI light direction in [0, 360), azimuth")
parser.add_argument('--max_spp', type=int, default=1, help="GUI rendering max sample per pixel")

opt = parser.parse_args() 

# default to use -O !!!
opt.fp16 = True
opt.dir_text = True
opt.cuda_ray = True
# opt.lambda_entropy = 1e-4
# opt.lambda_opacity = 0

if opt.backbone == 'vanilla':
    from nerf.network import NeRFNetwork
elif opt.backbone == 'tcnn':
    from nerf.network_tcnn import NeRFNetwork
elif opt.backbone == 'grid':
    from nerf.network_grid import NeRFNetwork
else:
    raise NotImplementedError(f'--backbone {opt.backbone} is not implemented!')

print(opt)

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

print(f'[INFO] loading models..')

if opt.guidance == 'stable-diffusion':
    from nerf.sd import StableDiffusion
    guidance = StableDiffusion(device)
elif opt.guidance == 'clip':
    from nerf.clip import CLIP
    guidance = CLIP(device)
else:
    raise NotImplementedError(f'--guidance {opt.guidance} is not implemented.')

train_loader = NeRFDataset(opt, device=device, type='train', H=opt.h, W=opt.w, size=100).dataloader()
valid_loader = NeRFDataset(opt, device=device, type='val', H=opt.H, W=opt.W, size=5).dataloader()
test_loader = NeRFDataset(opt, device=device, type='test', H=opt.H, W=opt.W, size=100).dataloader()

print(f'[INFO] everything loaded!')

trainer = None
model = None

# define UI

with gr.Blocks(css=".gradio-container {max-width: 512px; margin: auto;}") as demo:

    # title
    gr.Markdown('[Stable-DreamFusion](https://github.com/ashawkey/stable-dreamfusion) Text-to-3D Example')

    # inputs
    prompt = gr.Textbox(label="Prompt", max_lines=1, value="a DSLR photo of a koi fish")
    iters = gr.Slider(label="Iters", minimum=1000, maximum=20000, value=5000, step=100)
    seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True)
    button = gr.Button('Generate')

    # outputs
    image = gr.Image(label="image", visible=True)
    video = gr.Video(label="video", visible=False)
    logs = gr.Textbox(label="logging")

    # gradio main func
    def submit(text, iters, seed):

        global trainer, model

        # seed
        opt.seed = seed
        opt.text = text
        opt.iters = iters

        seed_everything(seed)

        # clean up
        if trainer is not None:
            del model
            del trainer
            gc.collect()
            torch.cuda.empty_cache()
            print('[INFO] clean up!')

        # simply reload everything...
        model = NeRFNetwork(opt)
        optimizer = lambda model: torch.optim.Adam(model.get_params(opt.lr), betas=(0.9, 0.99), eps=1e-15)
        scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 0.1 ** min(iter / opt.iters, 1))

        trainer = Trainer('df', opt, model, guidance, device=device, workspace=opt.workspace, optimizer=optimizer, ema_decay=0.95, fp16=opt.fp16, lr_scheduler=scheduler, use_checkpoint=opt.ckpt, eval_interval=opt.eval_interval, scheduler_update_every_step=True)

        # train (every ep only contain 8 steps, so we can get some vis every ~10s)
        STEPS = 8
        max_epochs = np.ceil(opt.iters / STEPS).astype(np.int32)

        # we have to get the explicit training loop out here to yield progressive results...
        loader = iter(valid_loader)

        start_t = time.time()

        for epoch in range(max_epochs):

            trainer.train_gui(train_loader, step=STEPS)
            
            # manual test and get intermediate results
            try:
                data = next(loader)
            except StopIteration:
                loader = iter(valid_loader)
                data = next(loader)

            trainer.model.eval()

            if trainer.ema is not None:
                trainer.ema.store()
                trainer.ema.copy_to()

            with torch.no_grad():
                with torch.cuda.amp.autocast(enabled=trainer.fp16):
                    preds, preds_depth = trainer.test_step(data, perturb=False)

            if trainer.ema is not None:
                trainer.ema.restore()

            pred = preds[0].detach().cpu().numpy()
            # pred_depth = preds_depth[0].detach().cpu().numpy()

            pred = (pred * 255).astype(np.uint8)

            yield {
                image: gr.update(value=pred, visible=True),
                video: gr.update(visible=False),
                logs: f"training iters: {epoch * STEPS} / {iters}, lr: {trainer.optimizer.param_groups[0]['lr']:.6f}",
            }
        

        # test
        trainer.test(test_loader)

        results = glob.glob(os.path.join(opt.workspace, 'results', '*rgb*.mp4'))
        assert results is not None, "cannot retrieve results!"
        results.sort(key=lambda x: os.path.getmtime(x)) # sort by mtime
        
        end_t = time.time()
        
        yield {
            image: gr.update(visible=False),
            video: gr.update(value=results[-1], visible=True),
            logs: f"Generation Finished in {(end_t - start_t)/ 60:.4f} minutes!",
        }

    
    button.click(
        submit, 
        [prompt, iters, seed],
        [image, video, logs]
    )

# concurrency_count: only allow ONE running progress, else GPU will OOM.
demo.queue(concurrency_count=1)

demo.launch()