File size: 4,864 Bytes
607ecc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import auraloss
import gin
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
import wandb

from .modules.dynamic import TimeDistributedMLP
from .modules.generators import FIRNoiseSynth, HarmonicOscillator
from .modules.shaping import NEWT, Reverb

gin.external_configurable(nn.GRU, module="torch.nn")
gin.external_configurable(nn.Conv1d, module="torch.nn")


@gin.configurable
class ControlModule(nn.Module):
    def __init__(self, control_size: int, hidden_size: int, embedding_size: int):
        super().__init__()
        self.gru = nn.GRU(control_size, hidden_size, batch_first=True)
        self.proj = nn.Conv1d(hidden_size, embedding_size, 1)

    def forward(self, x):
        x, _ = self.gru(x.transpose(1, 2))
        return self.proj(x.transpose(1, 2))


@gin.configurable
class NeuralWaveshaping(pl.LightningModule):
    def __init__(
        self,
        n_waveshapers: int,
        control_hop: int,
        sample_rate: float = 16000,
        learning_rate: float = 1e-3,
        lr_decay: float = 0.9,
        lr_decay_interval: int = 10000,
        log_audio: bool = False,
    ):
        super().__init__()
        self.save_hyperparameters()
        self.learning_rate = learning_rate
        self.lr_decay = lr_decay
        self.lr_decay_interval = lr_decay_interval
        self.control_hop = control_hop
        self.log_audio = log_audio

        self.sample_rate = sample_rate

        self.embedding = ControlModule()

        self.osc = HarmonicOscillator()
        self.harmonic_mixer = nn.Conv1d(self.osc.n_harmonics, n_waveshapers, 1)

        self.newt = NEWT()

        with gin.config_scope("noise_synth"):
            self.h_generator = TimeDistributedMLP()
            self.noise_synth = FIRNoiseSynth()

        self.reverb = Reverb()

    def render_exciter(self, f0):
        sig = self.osc(f0[:, 0])
        sig = self.harmonic_mixer(sig)
        return sig

    def get_embedding(self, control):
        f0, other = control[:, 0:1], control[:, 1:2]
        control = torch.cat((f0, other), dim=1)
        return self.embedding(control)

    def forward(self, f0, control):
        f0_upsampled = F.upsample(f0, f0.shape[-1] * self.control_hop, mode="linear")
        x = self.render_exciter(f0_upsampled)

        control_embedding = self.get_embedding(control)

        x = self.newt(x, control_embedding)

        H = self.h_generator(control_embedding)
        noise = self.noise_synth(H)

        x = torch.cat((x, noise), dim=1)
        x = x.sum(1)

        x = self.reverb(x)

        return x

    def configure_optimizers(self):
        self.stft_loss = auraloss.freq.MultiResolutionSTFTLoss()

        optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate)
        scheduler = torch.optim.lr_scheduler.StepLR(
            optimizer, self.lr_decay_interval, self.lr_decay
        )
        return {
            "optimizer": optimizer,
            "lr_scheduler": {"scheduler": scheduler, "interval": "step"},
        }

    def _run_step(self, batch):
        audio = batch["audio"].float()
        f0 = batch["f0"].float()
        control = batch["control"].float()

        recon = self(f0, control)

        loss = self.stft_loss(recon, audio)
        return loss, recon, audio

    def _log_audio(self, name, audio):
        wandb.log(
            {
                "audio/%s"
                % name: wandb.Audio(audio, sample_rate=self.sample_rate, caption=name)
            },
            commit=False,
        )

    def training_step(self, batch, batch_idx):
        loss, _, _ = self._run_step(batch)
        self.log(
            "train/loss",
            loss.item(),
            on_step=False,
            on_epoch=True,
            prog_bar=True,
            logger=True,
            sync_dist=True,
        )
        return loss

    def validation_step(self, batch, batch_idx):
        loss, recon, audio = self._run_step(batch)
        self.log(
            "val/loss",
            loss.item(),
            on_step=False,
            on_epoch=True,
            prog_bar=True,
            logger=True,
            sync_dist=True,
        )
        if batch_idx == 0 and self.log_audio:
            self._log_audio("original", audio[0].detach().cpu().squeeze())
            self._log_audio("recon", recon[0].detach().cpu().squeeze())
        return loss

    def test_step(self, batch, batch_idx):
        loss, recon, audio = self._run_step(batch)
        self.log(
            "test/loss",
            loss.item(),
            on_step=False,
            on_epoch=True,
            prog_bar=True,
            logger=True,
            sync_dist=True,
        )
        if batch_idx == 0:
            self._log_audio("original", audio[0].detach().cpu().squeeze())
            self._log_audio("recon", recon[0].detach().cpu().squeeze())