Spaces:
Running
Running
File size: 5,437 Bytes
d58f539 f7de418 d58f539 f7de418 d58f539 669ae67 f7de418 d6247a0 f7de418 d58f539 f7de418 f8bd65e f7de418 ef46ff0 c2d4418 ef46ff0 16020a5 f8bd65e d6247a0 f8bd65e d6247a0 f8bd65e d6247a0 f8bd65e d6247a0 f8bd65e d58f539 f8bd65e ef46ff0 e490755 d58f539 ef46ff0 f8bd65e f7de418 ef46ff0 f7de418 f8bd65e f7de418 f8bd65e ef46ff0 f8bd65e d6247a0 f7de418 f8bd65e f7de418 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import gradio as gr
import numpy as np
import io
from pydub import AudioSegment
import tempfile
import os
import base64
import openai
import time
from dataclasses import dataclass, field
from threading import Lock
@dataclass
class AppState:
stream: np.ndarray | None = None
sampling_rate: int = 0
pause_detected: bool = False
started_talking: bool = False
stopped: bool = False
conversation: list = field(default_factory=list)
client: openai.OpenAI = None
# Global lock for thread safety
state_lock = Lock()
def create_client(api_key):
return openai.OpenAI(
base_url="https://llama3-1-8b.lepton.run/api/v1/",
api_key=api_key
)
def process_audio(audio: tuple, state: AppState):
if state.stream is None:
state.stream = audio[1]
state.sampling_rate = audio[0]
else:
state.stream = np.concatenate((state.stream, audio[1]))
# Simple pause detection (you might want to implement a more sophisticated method)
if len(state.stream) > state.sampling_rate * 0.5: # 0.5 second of silence
state.pause_detected = True
return gr.Audio(recording=False), state
return None, state
def generate_response_and_audio(audio_bytes: bytes, state: AppState):
if state.client is None:
raise gr.Error("Please enter a valid API key first.")
format_ = "opus"
bitrate = 16
audio_data = base64.b64encode(audio_bytes).decode()
try:
stream = state.client.chat.completions.create(
extra_body={
"require_audio": True,
"tts_preset_id": "jessica",
"tts_audio_format": format_,
"tts_audio_bitrate": bitrate
},
model="llama3.1-8b",
messages=[{"role": "user", "content": [{"type": "audio", "data": audio_data}]}],
temperature=0.5,
max_tokens=128,
stream=True,
)
full_response = ""
audios = []
for chunk in stream:
if not chunk.choices:
continue
content = chunk.choices[0].delta.content
audio = getattr(chunk.choices[0], 'audio', [])
if content:
full_response += content
yield full_response, None, state
if audio:
audios.extend(audio)
audio_data = b''.join([base64.b64decode(a) for a in audios])
yield full_response, audio_data, state
state.conversation.append({"role": "user", "content": "Audio input"})
state.conversation.append({"role": "assistant", "content": full_response})
except Exception as e:
raise gr.Error(f"Error during audio streaming: {e}")
def response(state: AppState):
if not state.pause_detected:
return None, None, AppState()
audio_buffer = io.BytesIO()
segment = AudioSegment(
state.stream.tobytes(),
frame_rate=state.sampling_rate,
sample_width=state.stream.dtype.itemsize,
channels=(1 if len(state.stream.shape) == 1 else state.stream.shape[1]),
)
segment.export(audio_buffer, format="wav")
generator = generate_response_and_audio(audio_buffer.getvalue(), state)
# Process the generator to get the final results
final_text = ""
final_audio = None
for text, audio, updated_state in generator:
final_text = text if text else final_text
final_audio = audio if audio else final_audio
state = updated_state
# Update the chatbot with the final conversation
chatbot_output = state.conversation[-2:] # Get the last two messages (user input and AI response)
return chatbot_output, final_audio, state
def set_api_key(api_key, state):
if not api_key:
raise gr.Error("Please enter a valid API key.")
state.client = create_client(api_key)
return "API key set successfully!", state
def start_recording_user(state: AppState):
if not state.stopped:
return gr.Audio(recording=True)
with gr.Blocks() as demo:
with gr.Row():
api_key_input = gr.Textbox(type="password", label="Enter your Lepton API Key")
set_key_button = gr.Button("Set API Key")
api_key_status = gr.Textbox(label="API Key Status", interactive=False)
with gr.Row():
with gr.Column():
input_audio = gr.Audio(label="Input Audio", sources="microphone", type="numpy")
with gr.Column():
chatbot = gr.Chatbot(label="Conversation", type="messages")
output_audio = gr.Audio(label="Output Audio", streaming=True, autoplay=True)
state = gr.State(AppState())
set_key_button.click(set_api_key, inputs=[api_key_input, state], outputs=[api_key_status, state])
stream = input_audio.stream(
process_audio,
[input_audio, state],
[input_audio, state],
stream_every=0.50,
time_limit=30,
)
respond = input_audio.stop_recording(
response,
[state],
[chatbot, output_audio, state]
)
restart = output_audio.stop(
start_recording_user,
[state],
[input_audio]
)
cancel = gr.Button("Stop Conversation", variant="stop")
cancel.click(
lambda: (AppState(stopped=True), gr.Audio(recording=False)),
None,
[state, input_audio],
cancels=[respond, restart]
)
demo.launch() |