Spaces:
Running
Running
File size: 5,884 Bytes
d58f539 f7de418 d58f539 f7de418 d58f539 669ae67 f7de418 d6247a0 f7de418 d58f539 f7de418 f8bd65e 913a139 f7de418 ef46ff0 913a139 ef46ff0 c2d4418 ef46ff0 16020a5 f8bd65e 913a139 f8bd65e 913a139 f8bd65e 913a139 f8bd65e d6247a0 913a139 d6247a0 f8bd65e d6247a0 913a139 d6247a0 f8bd65e d6247a0 f8bd65e d6247a0 f8bd65e d58f539 f8bd65e 913a139 f8bd65e ef46ff0 e490755 913a139 e490755 d58f539 ef46ff0 913a139 f8bd65e f7de418 ef46ff0 913a139 f7de418 f8bd65e f7de418 f8bd65e ef46ff0 913a139 f8bd65e 913a139 d6247a0 f7de418 f8bd65e f7de418 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import gradio as gr
import numpy as np
import io
from pydub import AudioSegment
import tempfile
import os
import base64
import openai
import time
from dataclasses import dataclass, field
from threading import Lock
@dataclass
class AppState:
stream: np.ndarray | None = None
sampling_rate: int = 0
pause_start: float | None = None
last_speech: float = 0
conversation: list = field(default_factory=list)
client: openai.OpenAI = None
output_format: str = "mp3"
# Global lock for thread safety
state_lock = Lock()
def create_client(api_key):
return openai.OpenAI(
base_url="https://llama3-1-8b.lepton.run/api/v1/",
api_key=api_key
)
def process_audio(audio: tuple, state: AppState):
if state.stream is None:
state.stream = audio[1]
state.sampling_rate = audio[0]
state.last_speech = time.time()
else:
state.stream = np.concatenate((state.stream, audio[1]))
# Improved pause detection
current_time = time.time()
if np.max(np.abs(audio[1])) > 0.1: # Adjust this threshold as needed
state.last_speech = current_time
state.pause_start = None
elif state.pause_start is None:
state.pause_start = current_time
# Check if pause is long enough to stop recording
if state.pause_start and (current_time - state.pause_start > 2.0): # 2 seconds of silence
return gr.Audio(recording=False), state
return None, state
def generate_response_and_audio(audio_bytes: bytes, state: AppState):
if state.client is None:
raise gr.Error("Please enter a valid API key first.")
format_ = state.output_format
bitrate = 128 if format_ == "mp3" else 32 # Higher bitrate for MP3, lower for OPUS
audio_data = base64.b64encode(audio_bytes).decode()
try:
stream = state.client.chat.completions.create(
extra_body={
"require_audio": True,
"tts_preset_id": "jessica",
"tts_audio_format": format_,
"tts_audio_bitrate": bitrate
},
model="llama3.1-8b",
messages=[{"role": "user", "content": [{"type": "audio", "data": audio_data}]}],
temperature=0.7,
max_tokens=256,
stream=True,
)
full_response = ""
audios = []
for chunk in stream:
if not chunk.choices:
continue
content = chunk.choices[0].delta.content
audio = getattr(chunk.choices[0], 'audio', [])
if content:
full_response += content
yield full_response, None, state
if audio:
audios.extend(audio)
audio_data = b''.join([base64.b64decode(a) for a in audios])
yield full_response, audio_data, state
state.conversation.append({"role": "user", "content": "Audio input"})
state.conversation.append({"role": "assistant", "content": full_response})
except Exception as e:
raise gr.Error(f"Error during audio streaming: {e}")
def response(state: AppState):
if state.stream is None or len(state.stream) == 0:
return None, None, state
audio_buffer = io.BytesIO()
segment = AudioSegment(
state.stream.tobytes(),
frame_rate=state.sampling_rate,
sample_width=state.stream.dtype.itemsize,
channels=(1 if len(state.stream.shape) == 1 else state.stream.shape[1]),
)
segment.export(audio_buffer, format="wav")
generator = generate_response_and_audio(audio_buffer.getvalue(), state)
# Process the generator to get the final results
final_text = ""
final_audio = None
for text, audio, updated_state in generator:
final_text = text if text else final_text
final_audio = audio if audio else final_audio
state = updated_state
# Update the chatbot with the final conversation
chatbot_output = state.conversation[-2:] # Get the last two messages (user input and AI response)
# Reset the audio stream for the next interaction
state.stream = None
state.pause_start = None
state.last_speech = 0
return chatbot_output, final_audio, state
def set_api_key(api_key, state):
if not api_key:
raise gr.Error("Please enter a valid API key.")
state.client = create_client(api_key)
return "API key set successfully!", state
def update_format(format, state):
state.output_format = format
return state
with gr.Blocks() as demo:
with gr.Row():
api_key_input = gr.Textbox(type="password", label="Enter your Lepton API Key")
set_key_button = gr.Button("Set API Key")
api_key_status = gr.Textbox(label="API Key Status", interactive=False)
with gr.Row():
format_dropdown = gr.Dropdown(choices=["mp3", "opus"], value="mp3", label="Output Audio Format")
with gr.Row():
with gr.Column():
input_audio = gr.Audio(label="Input Audio", sources="microphone", type="numpy")
with gr.Column():
chatbot = gr.Chatbot(label="Conversation", type="messages")
output_audio = gr.Audio(label="Output Audio", streaming=True, autoplay=True)
state = gr.State(AppState())
set_key_button.click(set_api_key, inputs=[api_key_input, state], outputs=[api_key_status, state])
format_dropdown.change(update_format, inputs=[format_dropdown, state], outputs=[state])
stream = input_audio.stream(
process_audio,
[input_audio, state],
[input_audio, state],
stream_every=0.25, # Reduced to make it more responsive
time_limit=60, # Increased to allow for longer messages
)
respond = input_audio.stop_recording(
response,
[state],
[chatbot, output_audio, state]
)
demo.launch() |