Spaces:
Runtime error
Runtime error
File size: 9,406 Bytes
d380b77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import logging
import torch
import torch.nn.functional as F
from omegaconf import OmegaConf
from saicinpainting.training.data.datasets import make_constant_area_crop_params
from saicinpainting.training.losses.distance_weighting import make_mask_distance_weighter
from saicinpainting.training.losses.feature_matching import feature_matching_loss, masked_l1_loss
from saicinpainting.training.modules.fake_fakes import FakeFakesGenerator
from saicinpainting.training.trainers.base import BaseInpaintingTrainingModule, make_multiscale_noise
from saicinpainting.utils import add_prefix_to_keys, get_ramp
LOGGER = logging.getLogger(__name__)
def make_constant_area_crop_batch(batch, **kwargs):
crop_y, crop_x, crop_height, crop_width = make_constant_area_crop_params(img_height=batch['image'].shape[2],
img_width=batch['image'].shape[3],
**kwargs)
batch['image'] = batch['image'][:, :, crop_y : crop_y + crop_height, crop_x : crop_x + crop_width]
batch['mask'] = batch['mask'][:, :, crop_y: crop_y + crop_height, crop_x: crop_x + crop_width]
return batch
class DefaultInpaintingTrainingModule(BaseInpaintingTrainingModule):
def __init__(self, *args, concat_mask=True, rescale_scheduler_kwargs=None, image_to_discriminator='predicted_image',
add_noise_kwargs=None, noise_fill_hole=False, const_area_crop_kwargs=None,
distance_weighter_kwargs=None, distance_weighted_mask_for_discr=False,
fake_fakes_proba=0, fake_fakes_generator_kwargs=None,
**kwargs):
super().__init__(*args, **kwargs)
self.concat_mask = concat_mask
self.rescale_size_getter = get_ramp(**rescale_scheduler_kwargs) if rescale_scheduler_kwargs is not None else None
self.image_to_discriminator = image_to_discriminator
self.add_noise_kwargs = add_noise_kwargs
self.noise_fill_hole = noise_fill_hole
self.const_area_crop_kwargs = const_area_crop_kwargs
self.refine_mask_for_losses = make_mask_distance_weighter(**distance_weighter_kwargs) \
if distance_weighter_kwargs is not None else None
self.distance_weighted_mask_for_discr = distance_weighted_mask_for_discr
self.fake_fakes_proba = fake_fakes_proba
if self.fake_fakes_proba > 1e-3:
self.fake_fakes_gen = FakeFakesGenerator(**(fake_fakes_generator_kwargs or {}))
def forward(self, batch):
if self.training and self.rescale_size_getter is not None:
cur_size = self.rescale_size_getter(self.global_step)
batch['image'] = F.interpolate(batch['image'], size=cur_size, mode='bilinear', align_corners=False)
batch['mask'] = F.interpolate(batch['mask'], size=cur_size, mode='nearest')
if self.training and self.const_area_crop_kwargs is not None:
batch = make_constant_area_crop_batch(batch, **self.const_area_crop_kwargs)
img = batch['image']
mask = batch['mask']
masked_img = img * (1 - mask)
if self.add_noise_kwargs is not None:
noise = make_multiscale_noise(masked_img, **self.add_noise_kwargs)
if self.noise_fill_hole:
masked_img = masked_img + mask * noise[:, :masked_img.shape[1]]
masked_img = torch.cat([masked_img, noise], dim=1)
if self.concat_mask:
masked_img = torch.cat([masked_img, mask], dim=1)
batch['predicted_image'] = self.generator(masked_img)
batch['inpainted'] = mask * batch['predicted_image'] + (1 - mask) * batch['image']
if self.fake_fakes_proba > 1e-3:
if self.training and torch.rand(1).item() < self.fake_fakes_proba:
batch['fake_fakes'], batch['fake_fakes_masks'] = self.fake_fakes_gen(img, mask)
batch['use_fake_fakes'] = True
else:
batch['fake_fakes'] = torch.zeros_like(img)
batch['fake_fakes_masks'] = torch.zeros_like(mask)
batch['use_fake_fakes'] = False
batch['mask_for_losses'] = self.refine_mask_for_losses(img, batch['predicted_image'], mask) \
if self.refine_mask_for_losses is not None and self.training \
else mask
return batch
def generator_loss(self, batch):
img = batch['image']
predicted_img = batch[self.image_to_discriminator]
original_mask = batch['mask']
supervised_mask = batch['mask_for_losses']
# L1
l1_value = masked_l1_loss(predicted_img, img, supervised_mask,
self.config.losses.l1.weight_known,
self.config.losses.l1.weight_missing)
total_loss = l1_value
metrics = dict(gen_l1=l1_value)
# vgg-based perceptual loss
if self.config.losses.perceptual.weight > 0:
pl_value = self.loss_pl(predicted_img, img, mask=supervised_mask).sum() * self.config.losses.perceptual.weight
total_loss = total_loss + pl_value
metrics['gen_pl'] = pl_value
# discriminator
# adversarial_loss calls backward by itself
mask_for_discr = supervised_mask if self.distance_weighted_mask_for_discr else original_mask
self.adversarial_loss.pre_generator_step(real_batch=img, fake_batch=predicted_img,
generator=self.generator, discriminator=self.discriminator)
discr_real_pred, discr_real_features = self.discriminator(img)
discr_fake_pred, discr_fake_features = self.discriminator(predicted_img)
adv_gen_loss, adv_metrics = self.adversarial_loss.generator_loss(real_batch=img,
fake_batch=predicted_img,
discr_real_pred=discr_real_pred,
discr_fake_pred=discr_fake_pred,
mask=mask_for_discr)
total_loss = total_loss + adv_gen_loss
metrics['gen_adv'] = adv_gen_loss
metrics.update(add_prefix_to_keys(adv_metrics, 'adv_'))
# feature matching
if self.config.losses.feature_matching.weight > 0:
need_mask_in_fm = OmegaConf.to_container(self.config.losses.feature_matching).get('pass_mask', False)
mask_for_fm = supervised_mask if need_mask_in_fm else None
fm_value = feature_matching_loss(discr_fake_features, discr_real_features,
mask=mask_for_fm) * self.config.losses.feature_matching.weight
total_loss = total_loss + fm_value
metrics['gen_fm'] = fm_value
if self.loss_resnet_pl is not None:
resnet_pl_value = self.loss_resnet_pl(predicted_img, img)
total_loss = total_loss + resnet_pl_value
metrics['gen_resnet_pl'] = resnet_pl_value
return total_loss, metrics
def discriminator_loss(self, batch):
total_loss = 0
metrics = {}
predicted_img = batch[self.image_to_discriminator].detach()
self.adversarial_loss.pre_discriminator_step(real_batch=batch['image'], fake_batch=predicted_img,
generator=self.generator, discriminator=self.discriminator)
discr_real_pred, discr_real_features = self.discriminator(batch['image'])
discr_fake_pred, discr_fake_features = self.discriminator(predicted_img)
adv_discr_loss, adv_metrics = self.adversarial_loss.discriminator_loss(real_batch=batch['image'],
fake_batch=predicted_img,
discr_real_pred=discr_real_pred,
discr_fake_pred=discr_fake_pred,
mask=batch['mask'])
total_loss = total_loss + adv_discr_loss
metrics['discr_adv'] = adv_discr_loss
metrics.update(add_prefix_to_keys(adv_metrics, 'adv_'))
if batch.get('use_fake_fakes', False):
fake_fakes = batch['fake_fakes']
self.adversarial_loss.pre_discriminator_step(real_batch=batch['image'], fake_batch=fake_fakes,
generator=self.generator, discriminator=self.discriminator)
discr_fake_fakes_pred, _ = self.discriminator(fake_fakes)
fake_fakes_adv_discr_loss, fake_fakes_adv_metrics = self.adversarial_loss.discriminator_loss(
real_batch=batch['image'],
fake_batch=fake_fakes,
discr_real_pred=discr_real_pred,
discr_fake_pred=discr_fake_fakes_pred,
mask=batch['mask']
)
total_loss = total_loss + fake_fakes_adv_discr_loss
metrics['discr_adv_fake_fakes'] = fake_fakes_adv_discr_loss
metrics.update(add_prefix_to_keys(fake_fakes_adv_metrics, 'adv_'))
return total_loss, metrics
|