File size: 6,262 Bytes
7500954
4e5dbac
c0e85a0
 
4e5dbac
c0e85a0
7500954
4e5dbac
 
 
7500954
4e5dbac
7500954
4e5dbac
a508c6b
4e5dbac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a508c6b
4e5dbac
 
 
 
a508c6b
46979da
 
 
 
4e5dbac
 
46979da
 
a508c6b
46979da
a508c6b
 
46979da
 
 
4e5dbac
 
7500954
46979da
a508c6b
 
 
 
 
 
 
 
 
 
 
7500954
 
a508c6b
46979da
a508c6b
7500954
a508c6b
 
 
 
 
 
 
 
 
 
 
 
7500954
46979da
 
a508c6b
46979da
4e5dbac
46979da
 
 
 
 
4e5dbac
 
 
46979da
4e5dbac
46979da
 
4e5dbac
46979da
 
 
 
 
4e5dbac
 
 
46979da
4e5dbac
 
a508c6b
 
46979da
a508c6b
46979da
a508c6b
 
7500954
a508c6b
46979da
a508c6b
46979da
 
 
 
 
4e5dbac
46979da
 
 
 
 
4e5dbac
46979da
 
 
a508c6b
 
46979da
4e5dbac
46979da
a508c6b
 
 
 
4e5dbac
a508c6b
 
 
 
7500954
a508c6b
 
 
 
 
 
 
 
 
4e5dbac
 
 
a508c6b
7500954
a508c6b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import gradio as gr
from transformers import pipeline
import os

HF_TOKEN = os.environ["HF_TOKEN"]


# Initialize the text generation pipelines
pipe = pipeline("text-generation", model="akhaliq/MyGemmaGradioCoder")
pipe2 = pipeline("text-generation", model="google/gemma-3-270m-it", token=HF_TOKEN)

def generate_code(user_input, model_choice="Model 1"):
    """
    Generate code based on user input using the selected Gemma model
    """
    messages = [
        {"role": "user", "content": user_input},
    ]
    
    # Select pipeline based on model choice
    selected_pipe = pipe if model_choice == "Model 1 (MyGemmaGradioCoder)" else pipe2
    
    # Generate response from the model
    response = selected_pipe(messages, max_new_tokens=512, temperature=0.7, do_sample=True)
    
    # Extract the generated text from the response
    generated_text = response[0]['generated_text']
    
    # If the response contains the full conversation, extract just the assistant's response
    if isinstance(generated_text, list):
        # Handle conversation format
        for msg in generated_text:
            if msg.get('role') == 'assistant':
                return msg.get('content', '')
        # If no assistant message found, return the last message content
        return generated_text[-1].get('content', '') if generated_text else ""
    else:
        # Handle string format - try to extract the code after the user input
        if user_input in generated_text:
            return generated_text.split(user_input)[-1].strip()
        return generated_text

def generate_both(user_input):
    """
    Generate code from both models for comparison
    """
    output1 = generate_code(user_input, "Model 1 (MyGemmaGradioCoder)")
    output2 = generate_code(user_input, "Model 2 (gemma-3-270m-it)")
    return output1, output2

# Create the Gradio interface
with gr.Blocks(title="Text to Code Generator - Model Comparison", theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        # πŸš€ Text to Code Generator - Model Comparison
        
        Compare code generation from two different Gemma models:
        - **Model 1**: akhaliq/MyGemmaGradioCoder
        - **Model 2**: google/gemma-3-270m-it
        
        Simply describe what you want to build, and see how each model responds!
        """
    )
    
    with gr.Row():
        with gr.Column(scale=1):
            # Input section
            input_text = gr.Textbox(
                label="Describe what you want to code",
                placeholder="e.g., Create a Python function that calculates the factorial of a number",
                lines=5,
                max_lines=10
            )
            
            with gr.Row():
                generate_btn = gr.Button("Generate from Both Models", variant="primary", scale=2)
                clear_btn = gr.ClearButton([input_text], value="Clear", scale=1)
            
            # Examples section
            gr.Examples(
                examples=[
                    ["Create a Python function to check if a number is prime"],
                    ["Write a JavaScript function to reverse a string"],
                    ["Create a React component for a todo list item"],
                    ["Write a SQL query to find the top 5 customers by total purchase amount"],
                    ["Create a Python class for a bank account with deposit and withdraw methods"],
                ],
                inputs=input_text,
                label="Example Prompts"
            )
        
        with gr.Column(scale=2):
            # Output section - Two columns for comparison
            with gr.Row():
                with gr.Column():
                    gr.Markdown("### Model 1: MyGemmaGradioCoder")
                    output_code1 = gr.Code(
                        label="Generated Code (Model 1)",
                        language="python",
                        lines=15,
                        interactive=True,
                        show_line_numbers=True,
                        wrap_lines=True,
                        autocomplete=True
                    )
                    copy_btn1 = gr.Button("πŸ“‹ Copy Code", scale=1)
                
                with gr.Column():
                    gr.Markdown("### Model 2: gemma-3-270m-it")
                    output_code2 = gr.Code(
                        label="Generated Code (Model 2)",
                        language="python",
                        lines=15,
                        interactive=True,
                        show_line_numbers=True,
                        wrap_lines=True,
                        autocomplete=True
                    )
                    copy_btn2 = gr.Button("πŸ“‹ Copy Code", scale=1)
            
    # Add event handlers
    generate_btn.click(
        fn=generate_both,
        inputs=input_text,
        outputs=[output_code1, output_code2],
        api_name="generate"
    )
    
    input_text.submit(
        fn=generate_both,
        inputs=input_text,
        outputs=[output_code1, output_code2]
    )
    
    # Copy functionality for both outputs
    copy_btn1.click(
        fn=None,
        inputs=output_code1,
        outputs=None,
        js="""
        (code) => {
            navigator.clipboard.writeText(code);
            alert('Code from Model 1 copied to clipboard!');
            return null;
        }
        """
    )
    
    copy_btn2.click(
        fn=None,
        inputs=output_code2,
        outputs=None,
        js="""
        (code) => {
            navigator.clipboard.writeText(code);
            alert('Code from Model 2 copied to clipboard!');
            return null;
        }
        """
    )
    
    # Footer
    gr.Markdown(
        """
        ---
        πŸ’‘ **Tips:**
        - Be specific about the programming language you want
        - Include details about inputs, outputs, and edge cases
        - You can edit the generated code directly in the output box
        
        **Models:**
        - [akhaliq/MyGemmaGradioCoder](https://huggingface.co/akhaliq/MyGemmaGradioCoder)
        - [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it)
        """
    )

# Launch the app
if __name__ == "__main__":
    demo.launch()