File size: 20,094 Bytes
506da10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Utility functions for the visualizer."""
from absl import logging
import matplotlib.pyplot as plt
import numpy as np
import PIL
import tensorflow as tf

from deeplab2.data import coco_constants

# Amount of color perturbation added to colormap.
_COLOR_PERTURBATION = 60


def bit_get(val, idx):
  """Gets the bit value.

  Args:
    val: Input value, int or numpy int array.
    idx: Which bit of the input val.

  Returns:
    The "idx"-th bit of input val.
  """
  return (val >> idx) & 1


def create_pascal_label_colormap():
  """Creates a label colormap used in PASCAL VOC segmentation benchmark.

  Returns:
    A colormap for visualizing segmentation results.
  """
  colormap = np.zeros((512, 3), dtype=int)
  ind = np.arange(512, dtype=int)

  for shift in reversed(list(range(8))):
    for channel in range(3):
      colormap[:, channel] |= bit_get(ind, channel) << shift
    ind >>= 3

  return colormap


def create_rgb_from_instance_map(instance_map):
  """Creates an RGB image from an instance map for visualization.

  To assign a color to each instance, if the maximum value of the instance
  labels is smaller than the maximum allowed value of Pascal's colormap, we use
  Pascal's colormap. Otherwise, we use random and non-repeated colors.

  Args:
    instance_map: Numpy array of shape `[height, width]`, the instance map.

  Returns:
    instance_image: Numpy array of shape `[height, width, 3]`, the visualized
      RGB instance image.
  """
  # pylint: disable=protected-access
  if np.max(instance_map) < 512:
    colormap = create_pascal_label_colormap()
    instance_image = colormap[instance_map]
  else:
    np.random.seed(0)

    used_colors = [(0, 0, 0)]
    instanc_map_shape = instance_map.shape
    instance_image = np.zeros([instanc_map_shape[0], instanc_map_shape[1], 3],
                              np.uint8)
    instance_ids = np.unique(instance_map)
    for instance_id in instance_ids:
      # We preserve the id "0" for stuff.
      if instance_id == 0:
        continue
      r = np.random.randint(0, 256, dtype=np.uint8)
      g = np.random.randint(0, 256, dtype=np.uint8)
      b = np.random.randint(0, 256, dtype=np.uint8)
      while (r, g, b) in used_colors:
        r = np.random.randint(0, 256, dtype=np.uint8)
        g = np.random.randint(0, 256, dtype=np.uint8)
        b = np.random.randint(0, 256, dtype=np.uint8)
      instance_image[instance_map == instance_id, :] = (r, g, b)
      used_colors.append((r, g, b))
    instance_image[instance_map == 0, :] = (0, 0, 0)

  return instance_image


def _generate_color(used_colors):
  """"Generates a non-repeated color.

  This function first uses the pascal colormap to generate the color. If more
  colors are requested, it randomly generates a non-repeated color.

  Args:
    used_colors: A list, where each element is a tuple in the format of
      (r, g, b).

  Returns:
    A tuple representing a color in the format of (r, g, b).
    A list, which is the updated `used_colors` with the returned color tuple
      appended to it.
  """

  pascal_colormap = create_pascal_label_colormap()

  if len(used_colors) < len(pascal_colormap):
    color = tuple(pascal_colormap[len(used_colors)])
  else:
    r = np.random.randint(0, 256, dtype=np.uint8)
    g = np.random.randint(0, 256, dtype=np.uint8)
    b = np.random.randint(0, 256, dtype=np.uint8)
    while (r, g, b) in used_colors:
      r = np.random.randint(0, 256, dtype=np.uint8)
      g = np.random.randint(0, 256, dtype=np.uint8)
      b = np.random.randint(0, 256, dtype=np.uint8)
    color = (r, g, b)
  used_colors.append(color)

  return color, used_colors


def overlay_heatmap_on_image(heatmap,
                             input_image,
                             dpi=80.0,
                             add_color_bar=False):
  """Overlays a heatmap on top of an image.

  Args:
    heatmap: A numpy array (float32) of shape `[height, width]`,
      which is the heatmap of keypoints.
    input_image: A numpy array (float32 or uint8) of shape
      `[height, width, 3]`, which is an image and all the pixel values are in
      the range of [0.0, 255.0].
    dpi: Float, the dpi of the output image.
    add_color_bar: Boolean, whether to add a colorbar to the output image.

  Returns:
    A numpy array (uint8) of the same shape as the `input_image`.
  """

  # Generate the cmap.
  cmap = plt.cm.Reds
  # pylint: disable=protected-access
  cmap._init()
  # pylint: disable=protected-access
  cmap._lut[:, -1] = np.linspace(0, 1.0, 259)

  # Plot.
  image = input_image.astype(np.float32) / 255.0
  image_height, image_width, _ = image.shape
  fig, ax = plt.subplots(
      1,
      1,
      facecolor='white',
      figsize=(image_width / dpi, image_height / dpi),
      dpi=dpi)
  grid_y, grid_x = np.mgrid[0:image_height, 0:image_width]
  cb = ax.contourf(grid_x, grid_y, heatmap, 10, cmap=cmap)
  ax.imshow(image)
  ax.grid(False)
  plt.axis('off')
  if add_color_bar:
    plt.colorbar(cb)
  fig.subplots_adjust(bottom=0)
  fig.subplots_adjust(top=1)
  fig.subplots_adjust(right=1)
  fig.subplots_adjust(left=0)

  # Get the output image.
  fig.canvas.draw()
  # pylint: disable=protected-access
  output_image = np.array(fig.canvas.renderer._renderer)[:, :, :-1]
  plt.close()

  return output_image


# pylint: disable=invalid-name
def make_colorwheel():
  """Generates a color wheel for optical flow visualization.

  Reference implementation:
  https://github.com/tomrunia/OpticalFlow_Visualization

  Returns:
    flow_image: A numpy array of output image.
  """

  RY = 15
  YG = 6
  GC = 4
  CB = 11
  BM = 13
  MR = 6

  ncols = RY + YG + GC + CB + BM + MR
  colorwheel = np.zeros((ncols, 3))
  col = 0

  # RY
  colorwheel[0:RY, 0] = 255
  colorwheel[0:RY, 1] = np.floor(255 * np.arange(0, RY) / RY)
  col = col + RY
  # YG
  colorwheel[col:col + YG, 0] = 255 - np.floor(255 * np.arange(0, YG) / YG)
  colorwheel[col:col + YG, 1] = 255
  col = col + YG
  # GC
  colorwheel[col:col + GC, 1] = 255
  colorwheel[col:col + GC, 2] = np.floor(255 * np.arange(0, GC) / GC)
  col = col + GC
  # CB
  colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB)
  colorwheel[col:col+CB, 2] = 255
  col = col+CB
  # BM
  colorwheel[col:col + BM, 2] = 255
  colorwheel[col:col + BM, 0] = np.floor(255 * np.arange(0, BM) / BM)
  col = col + BM
  # MR
  colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR)
  colorwheel[col:col+MR, 0] = 255
  return colorwheel
# pylint: enable=invalid-name


def flow_compute_color(u, v):
  """Computes color for 2D flow field.

  Reference implementation:
  https://github.com/tomrunia/OpticalFlow_Visualization

  Args:
    u: A numpy array of horizontal flow.
    v: A numpy array of vertical flow.

  Returns:
    flow_image: A numpy array of output image.
  """

  flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8)

  colorwheel = make_colorwheel()  # shape [55x3]
  ncols = colorwheel.shape[0]

  rad = np.sqrt(np.square(u) + np.square(v))
  a = np.arctan2(-v, -u) / np.pi

  fk = (a + 1) / 2 * (ncols - 1)
  k0 = np.floor(fk).astype(np.int32)
  k1 = k0 + 1
  k1[k1 == ncols] = 0
  f = fk - k0

  for i in range(colorwheel.shape[1]):
    tmp = colorwheel[:, i]
    color0 = tmp[k0] / 255.0
    color1 = tmp[k1] / 255.0
    color = (1 - f) * color0 + f * color1

    idx = (rad <= 1)
    color[idx] = 1 - rad[idx] * (1 - color[idx])
    color[~idx] = color[~idx] * 0.75

    # The order is RGB.
    ch_idx = i
    flow_image[:, :, ch_idx] = np.floor(255 * color)

  return flow_image


def flow_to_color(flow_uv, clip_flow=None):
  """Applies color to 2D flow field.

  Reference implementation:
  https://github.com/tomrunia/OpticalFlow_Visualization

  Args:
    flow_uv: A numpy array of flow with shape [Height, Width, 2].
    clip_flow: A float to clip the maximum value for the flow.

  Returns:
    flow_image: A numpy array of output image.

  Raises:
    ValueError: Input flow does not have dimension equals to 3.
    ValueError: Input flow does not have shape [H, W, 2].
  """

  if flow_uv.ndim != 3:
    raise ValueError('Input flow must have three dimensions.')
  if flow_uv.shape[2] != 2:
    raise ValueError('Input flow must have shape [H, W, 2].')

  if clip_flow is not None:
    flow_uv = np.clip(flow_uv, 0, clip_flow)

  u = flow_uv[:, :, 0]
  v = flow_uv[:, :, 1]

  rad = np.sqrt(np.square(u) + np.square(v))
  rad_max = np.max(rad)

  epsilon = 1e-5
  u = u / (rad_max + epsilon)
  v = v / (rad_max + epsilon)

  return flow_compute_color(u, v)


def squeeze_batch_dim_and_convert_to_numpy(input_dict):
  for key in input_dict:
    input_dict[key] = tf.squeeze(input_dict[key], axis=0).numpy()
  return input_dict


def create_cityscapes_label_colormap():
  """Creates a label colormap used in CITYSCAPES segmentation benchmark.

  Returns:
    A colormap for visualizing segmentation results.
  """
  colormap = np.zeros((256, 3), dtype=np.uint8)
  colormap[0] = [128, 64, 128]
  colormap[1] = [244, 35, 232]
  colormap[2] = [70, 70, 70]
  colormap[3] = [102, 102, 156]
  colormap[4] = [190, 153, 153]
  colormap[5] = [153, 153, 153]
  colormap[6] = [250, 170, 30]
  colormap[7] = [220, 220, 0]
  colormap[8] = [107, 142, 35]
  colormap[9] = [152, 251, 152]
  colormap[10] = [70, 130, 180]
  colormap[11] = [220, 20, 60]
  colormap[12] = [255, 0, 0]
  colormap[13] = [0, 0, 142]
  colormap[14] = [0, 0, 70]
  colormap[15] = [0, 60, 100]
  colormap[16] = [0, 80, 100]
  colormap[17] = [0, 0, 230]
  colormap[18] = [119, 11, 32]
  return colormap


def create_motchallenge_label_colormap():
  """Creates a label colormap used in MOTChallenge-STEP benchmark.

  Returns:
    A colormap for visualizing segmentation results.
  """
  colormap = np.zeros((256, 3), dtype=np.uint8)
  colormap[0] = [244, 35, 232]
  colormap[1] = [70, 70, 70]
  colormap[2] = [107, 142, 35]
  colormap[3] = [70, 130, 180]
  colormap[4] = [220, 20, 60]
  colormap[5] = [255, 0, 0]
  colormap[6] = [119, 11, 32]
  return colormap


def create_coco_label_colormap():
  """Creates a label colormap used in COCO dataset.

  Returns:
    A colormap for visualizing segmentation results.
  """
  # Obtain the dictionary mapping original category id to contiguous ones.
  coco_categories = coco_constants.get_coco_reduced_meta()
  colormap = np.zeros((256, 3), dtype=np.uint8)
  for category in coco_categories:
    colormap[category['id']] = category['color']
  return colormap


def label_to_color_image(label, colormap_name='cityscapes'):
  """Adds color defined by the colormap derived from the dataset to the label.

  Args:
    label: A 2D array with integer type, storing the segmentation label.
    colormap_name: A string specifying the name of the dataset. Used for
      choosing the right colormap. Currently supported: 'cityscapes',
      'motchallenge'. (Default: 'cityscapes')

  Returns:
    result: A 2D array with floating type. The element of the array
      is the color indexed by the corresponding element in the input label
      to the cityscapes colormap.

  Raises:
    ValueError: If label is not of rank 2 or its value is larger than color
      map maximum entry.
  """
  if label.ndim != 2:
    raise ValueError('Expect 2-D input label. Got {}'.format(label.shape))

  if np.max(label) >= 256:
    raise ValueError(
        'label value too large: {} >= 256.'.format(np.max(label)))

  if colormap_name == 'cityscapes':
    colormap = create_cityscapes_label_colormap()
  elif colormap_name == 'motchallenge':
    colormap = create_motchallenge_label_colormap()
  elif colormap_name == 'coco':
    colormap = create_coco_label_colormap()
  else:
    raise ValueError('Could not find a colormap for dataset %s.' %
                     colormap_name)
  return colormap[label]


def save_parsing_result(parsing_result,
                        label_divisor,
                        thing_list,
                        save_dir,
                        filename,
                        id_to_colormap=None,
                        colormap_name='cityscapes'):
  """Saves the parsing results.

  The parsing result encodes both semantic segmentation and instance
  segmentation results. In order to visualize the parsing result with only
  one png file, we adopt the following procedures, similar to the
  `visualization.py` provided in the COCO panoptic segmentation evaluation
  codes.

  1. Pixels predicted as `stuff` will take the same semantic color defined
    in the colormap.
  2. Pixels of a predicted `thing` instance will take similar semantic color
    defined in the colormap. For example, `car` class takes blue color in
    the colormap. Predicted car instance 1 will then be colored with the
    blue color perturbed with a small amount of RGB noise.

  Args:
    parsing_result: The numpy array to be saved. The data will be converted
      to uint8 and saved as png image.
    label_divisor: Integer, encoding the semantic segmentation and instance
      segmentation results as value = semantic_label * label_divisor +
      instance_label.
    thing_list: A list containing the semantic indices of the thing classes.
    save_dir: String, the directory to which the results will be saved.
    filename: String, the image filename.
    id_to_colormap: An optional mapping from track ID to color.
    colormap_name: A string specifying the dataset to choose the corresponding
      color map. Currently supported: 'cityscapes', 'motchallenge'. (Default:
      'cityscapes').

  Raises:
    ValueError: If parsing_result is not of rank 2 or its value in semantic
      segmentation result is larger than color map maximum entry.
    ValueError: If provided colormap_name is not supported.

  Returns:
    If id_to_colormap is passed, the updated id_to_colormap will be returned.
  """
  if parsing_result.ndim != 2:
    raise ValueError('Expect 2-D parsing result. Got {}'.format(
        parsing_result.shape))
  semantic_result = parsing_result // label_divisor
  instance_result = parsing_result % label_divisor
  colormap_max_value = 256
  if np.max(semantic_result) >= colormap_max_value:
    raise ValueError('Predicted semantic value too large: {} >= {}.'.format(
        np.max(semantic_result), colormap_max_value))
  height, width = parsing_result.shape
  colored_output = np.zeros((height, width, 3), dtype=np.uint8)
  if colormap_name == 'cityscapes':
    colormap = create_cityscapes_label_colormap()
  elif colormap_name == 'motchallenge':
    colormap = create_motchallenge_label_colormap()
  elif colormap_name == 'coco':
    colormap = create_coco_label_colormap()
  else:
    raise ValueError('Could not find a colormap for dataset %s.' %
                     colormap_name)
  # Keep track of used colors.
  used_colors = set()
  if id_to_colormap is not None:
    used_colors = set([tuple(val) for val in id_to_colormap.values()])
    np_state = None
  else:
    # Use random seed 0 in order to reproduce the same visualization.
    np_state = np.random.RandomState(0)

  unique_semantic_values = np.unique(semantic_result)
  for semantic_value in unique_semantic_values:
    semantic_mask = semantic_result == semantic_value
    if semantic_value in thing_list:
      # For `thing` class, we will add a small amount of random noise to its
      # correspondingly predefined semantic segmentation colormap.
      unique_instance_values = np.unique(instance_result[semantic_mask])
      for instance_value in unique_instance_values:
        instance_mask = np.logical_and(semantic_mask,
                                       instance_result == instance_value)
        if id_to_colormap is not None:
          if instance_value in id_to_colormap:
            colored_output[instance_mask] = id_to_colormap[instance_value]
            continue
        random_color = perturb_color(
            colormap[semantic_value],
            _COLOR_PERTURBATION,
            used_colors,
            random_state=np_state)
        colored_output[instance_mask] = random_color
        if id_to_colormap is not None:
          id_to_colormap[instance_value] = random_color
    else:
      # For `stuff` class, we use the defined semantic color.
      colored_output[semantic_mask] = colormap[semantic_value]
      used_colors.add(tuple(colormap[semantic_value]))

  pil_image = PIL.Image.fromarray(colored_output.astype(dtype=np.uint8))
  with tf.io.gfile.GFile('{}/{}.png'.format(save_dir, filename), mode='w') as f:
    pil_image.save(f, 'PNG')
  if id_to_colormap is not None:
    return id_to_colormap


def perturb_color(color,
                  noise,
                  used_colors=None,
                  max_trials=50,
                  random_state=None):
  """Pertrubs the color with some noise.

  If `used_colors` is not None, we will return the color that has
  not appeared before in it.

  Args:
    color: A numpy array with three elements [R, G, B].
    noise: Integer, specifying the amount of perturbing noise.
    used_colors: A set, used to keep track of used colors.
    max_trials: An integer, maximum trials to generate random color.
    random_state: An optional np.random.RandomState. If passed, will be used to
      generate random numbers.

  Returns:
    A perturbed color that has not appeared in used_colors.
  """
  for _ in range(max_trials):
    if random_state is not None:
      random_color = color + random_state.randint(
          low=-noise, high=noise + 1, size=3)
    else:
      random_color = color + np.random.randint(low=-noise,
                                               high=noise+1,
                                               size=3)
    random_color = np.maximum(0, np.minimum(255, random_color))
    if used_colors is None:
      return random_color
    elif tuple(random_color) not in used_colors:
      used_colors.add(tuple(random_color))
      return random_color
  logging.warning('Using duplicate random color.')
  return random_color


def save_annotation(label,
                    save_dir,
                    filename,
                    add_colormap=True,
                    normalize_to_unit_values=False,
                    scale_values=False,
                    colormap_name='cityscapes'):
  """Saves the given label to image on disk.

  Args:
    label: The numpy array to be saved. The data will be converted
      to uint8 and saved as png image.
    save_dir: String, the directory to which the results will be saved.
    filename: String, the image filename.
    add_colormap: Boolean, add color map to the label or not.
    normalize_to_unit_values: Boolean, normalize the input values to [0, 1].
    scale_values: Boolean, scale the input values to [0, 255] for visualization.
    colormap_name: A string specifying the dataset to choose the corresponding
      color map. Currently supported: 'cityscapes', 'motchallenge'. (Default:
      'cityscapes').
  """
  # Add colormap for visualizing the prediction.
  if add_colormap:
    colored_label = label_to_color_image(label, colormap_name)
  else:
    colored_label = label
    if normalize_to_unit_values:
      min_value = np.amin(colored_label)
      max_value = np.amax(colored_label)
      range_value = max_value - min_value
      if range_value != 0:
        colored_label = (colored_label - min_value) / range_value

    if scale_values:
      colored_label = 255. * colored_label

  pil_image = PIL.Image.fromarray(colored_label.astype(dtype=np.uint8))
  with tf.io.gfile.GFile('%s/%s.png' % (save_dir, filename), mode='w') as f:
    pil_image.save(f, 'PNG')