File size: 12,814 Bytes
506da10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
// Copyright 2021 The Deeplab2 Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <cstdint>
#ifdef GOOGLE_CUDA
#define EIGEN_USE_GPU

#include <unordered_map>
#include <unordered_set>
#include <vector>

#include /*third_party*/"tensorflow/core/framework/op_kernel.h"
#include /*third_party*/"tensorflow/core/framework/register_types.h"
#include /*third_party*/"tensorflow/core/framework/tensor.h"
#include /*third_party*/"tensorflow/core/framework/tensor_shape.h"
#include /*third_party*/"tensorflow/core/framework/types.h"
#include /*third_party*/"tensorflow/core/util/gpu_kernel_helper.h"
#include /*third_party*/"merge_semantic_and_instance_maps_op_kernel.h" // local headers

namespace tensorflow_models {
namespace deeplab {
namespace deeplab2 {

namespace functor {

namespace {

using ::tensorflow::CudaGridRangeX;
using ::tensorflow::GetGpuLaunchConfig;
using ::tensorflow::GpuLaunchConfig;
using ::tensorflow::Tensor;
using ::tensorflow::TTypes;

using GPUDevice = ::Eigen::GpuDevice;

// Maximum number of instances and semantic classes. We default to
// 1024 and 256, respectively. Increase the values, if your dataset
// contains more instances per image or more semantic classes.
constexpr int32_t kMaxNumInstance = 1024;
constexpr int32_t kMaxNumSemantic = 256;

// CUDA kernel that initializes memory with a constant value.
template <typename T>
__global__ void SetToValue(const int num_threads, const T value, T* x) {
  for (int idx : CudaGridRangeX(num_threads)) {
    x[idx] = value;
  }
}

// CUDA kernel that goes over each pixel, and collects the following stats:
// 1. Whether this pixel belongs to "thing" class.
// 2. Semantic label count inside each instance.
// 3. Total pixel area of each "stuff" class.
// Size of each GPU array:
//   semantic_data: [height * width]
//   instance_data: [height * width]
//   is_thing_per_semantic_id: [kMaxNumSemantic]
//   is_thing_per_pixel: [height * width]
//   semantic_count_per_instance: [kMaxNumInstance * kMaxNumSemantic]
//   stuff_area: [kMaxNumSemantic]
__global__ void CollectPixelStats(const int num_threads,
                                  const int32_t* semantic_data,
                                  const int32_t* instance_data,
                                  const bool* is_thing_per_semantic_id,
                                  bool* is_thing_per_pixel,
                                  int32_t* semantic_count_per_instance,
                                  int32_t* stuff_area) {
  for (int idx : CudaGridRangeX(num_threads)) {
    const int32_t semantic_label =
        std::min(semantic_data[idx], kMaxNumSemantic - 1);
    const int32_t instance_label =
        std::min(instance_data[idx], kMaxNumInstance - 1);
    const bool is_thing = is_thing_per_semantic_id[semantic_label];
    is_thing_per_pixel[idx] = is_thing;

    const int offset = instance_label * kMaxNumSemantic + semantic_label;
    if (is_thing) {
      tensorflow::CudaAtomicAdd(semantic_count_per_instance + offset, 1);
    } else {
      tensorflow::CudaAtomicAdd(stuff_area + semantic_label, 1);
    }
  }
}

// CUDA kernel that merges semantic and instance prediction into panoptic map.
// Merging rules:
// 1. For "thing" class, its instance label will be reordered, and its semantic
//    label depends on major semantic label inside this instance.
// 2. For "stuff" class, its instance label is 0, and semantic label will be
//    a) void, if stuff area is small, and b) original semantic label.
// Size of each GPU array:
//   semantic_data: [height * width]
//   instance_data: [height * width]
//   is_thing_per_semantic_id: [kMaxNumSemantic]
//   is_thing_per_pixel: [height * width]
//   stuff_area: [kMaxNumSemantic]
//   labels_per_instance: [kMaxNumInstance * 2]
//   parsing_maps: [height * width]
__global__ void MergePredictions(
    const int num_threads, const int32_t* semantic_data,
    const int32_t* instance_data, const bool* is_thing_per_pixel,
    const int32_t* stuff_area, const int32_t* labels_per_instance,
    const int32_t stuff_area_limit, const int32_t label_divisor,
    const int32_t void_label, int32_t* parsing_maps) {
  for (int idx : CudaGridRangeX(num_threads)) {
    const int32_t semantic_label =
        std::min(semantic_data[idx], kMaxNumSemantic - 1);
    const int32_t instance_label =
        std::min(instance_data[idx], kMaxNumInstance - 1);
    const int32_t is_thing = static_cast<int32_t>(is_thing_per_pixel[idx]);

    const int32_t semantic_label_if_is_thing =
        labels_per_instance[instance_label * 2];
    const int32_t instance_label_if_is_thing =
        labels_per_instance[instance_label * 2 + 1];
    const int32_t panoptic_label_if_is_thing =
        semantic_label_if_is_thing * label_divisor + instance_label_if_is_thing;

    const int32_t is_void = static_cast<int32_t>(
        stuff_area_limit > 0 && stuff_area[semantic_label] <= stuff_area_limit);
    const int32_t semantic_label_if_is_stuff =
        is_void * void_label + (1 - is_void) * semantic_label;

    parsing_maps[idx] =
        is_thing * panoptic_label_if_is_thing +
        (1 - is_thing) * (semantic_label_if_is_stuff * label_divisor);
  }
}

// Generates semantic and instance label for each predicted instance.
// Size of each GPU array:
//   semantic_count_per_instance: [kMaxNumInstance * kMaxNumSemantic]
//   labels_per_instance: [kMaxNumInstance * 2]
void CreateLabelsPerInstance(const GPUDevice& d,
                             const int32_t* semantic_count_per_instance,
                             int32_t* labels_per_instance) {
  std::vector<int32_t> semantic_count_per_instance_host(kMaxNumInstance *
                                                        kMaxNumSemantic);
  d.memcpyDeviceToHost(semantic_count_per_instance_host.data(),
                       semantic_count_per_instance,
                       kMaxNumInstance * kMaxNumSemantic * sizeof(int32_t));

  // A flat 2D array with shape [kMaxNumInstance, 2], where each row
  // represents (new semantic label, new instance label) for each instance.
  std::vector<int32_t> labels_per_instance_host(kMaxNumInstance * 2);

  // Map semantic_label -> largest instance label of this semantic class.
  std::unordered_map<int32_t, int32_t> instance_count_per_semantic_class;
  for (int i = 0; i < kMaxNumInstance; ++i) {
    int max_pixel_count = 0;
    int max_semantic_label = -1;
    for (int j = 0; j < kMaxNumSemantic; ++j) {
      const int current_count =
          semantic_count_per_instance_host[i * kMaxNumSemantic + j];
      if (current_count > max_pixel_count) {
        max_semantic_label = j;
        max_pixel_count = current_count;
      }
    }

    labels_per_instance_host[2 * i] = std::max(0, max_semantic_label);
    if (max_semantic_label >= 0) {
      labels_per_instance_host[2 * i + 1] =
          ++instance_count_per_semantic_class[max_semantic_label];
    } else {
      labels_per_instance_host[2 * i + 1] = 0;
    }
  }

  d.memcpyHostToDevice(labels_per_instance, labels_per_instance_host.data(),
                       kMaxNumInstance * 2 * sizeof(int32_t));
}

}  // namespace

// Specialization of Convert1DInt32TensorToSet for GPU.
template <>
std::unordered_set<int32_t> Convert1DInt32TensorToSet(const GPUDevice& d,
                                                      const Tensor& tensor) {
  const int n_vals = tensor.dim_size(0);
  std::vector<int32_t> host_buffer(n_vals);
  d.memcpyDeviceToHost(host_buffer.data(), tensor.tensor<int32_t, 1>().data(),
                       n_vals * sizeof(int32_t));

  return std::unordered_set<int32_t>(host_buffer.begin(), host_buffer.end());
}

// This function merges the semantic segmentation and class-agnostic
// instance segmentation to form the panoptic segmentation. In particular,
// the class label of each instance mask is inferred from the majority
// votes from the corresponding pixels in the semantic segmentation. This
// operation is first poposed in the DeeperLab paper and adopted by the
// Panoptic-DeepLab.
// - DeeperLab: Single-Shot Image Parser, T-J Yang, et al. arXiv:1902.05093.
// - Panoptic-DeepLab, B. Cheng, et al. In CVPR, 2020.
// Specialization of MergeSemanticAndInstanceMaps for GPU.
template <>
void MergeSemanticAndInstanceMaps<GPUDevice>::operator()(
    const GPUDevice& d, typename TTypes<int32_t, 3>::ConstTensor semantic_maps,
    typename TTypes<int32_t, 3>::ConstTensor instance_maps,
    const std::unordered_set<int32_t>& thing_ids_set, int label_divisor,
    int stuff_area_limit, int void_label,
    typename TTypes<int32_t, 3>::Tensor parsing_maps) {
  const int num_batches = semantic_maps.dimension(0);
  const int height = semantic_maps.dimension(1);
  const int width = semantic_maps.dimension(2);

  // Allocate memory on host, which tells each semantic class is "thing" or not.
  bool is_thing_per_semantic_id[kMaxNumSemantic];
  for (int i = 0; i < kMaxNumSemantic; ++i) {
    is_thing_per_semantic_id[i] =
        (thing_ids_set.find(i) != thing_ids_set.end());
  }
  bool* is_thing_per_semantic_id_device =
      reinterpret_cast<bool*>(d.allocate_temp(kMaxNumSemantic * sizeof(bool)));
  d.memcpyHostToDevice(is_thing_per_semantic_id_device,
                       is_thing_per_semantic_id,
                       kMaxNumSemantic * sizeof(bool));

  // Allocate scratch memories on device.
  bool* is_thing_per_pixel_device =
      reinterpret_cast<bool*>(d.allocate_temp(height * width * sizeof(bool)));
  int32_t* semantic_count_per_instance_device = reinterpret_cast<int32_t*>(
      d.allocate_temp(kMaxNumInstance * kMaxNumSemantic * sizeof(int32_t)));
  int32_t* stuff_area_device = reinterpret_cast<int32_t*>(
      d.allocate_temp(kMaxNumSemantic * sizeof(int32_t)));
  int32_t* labels_per_instance_device = reinterpret_cast<int32_t*>(
      d.allocate_temp(kMaxNumInstance * 2 * sizeof(int32_t)));

  GpuLaunchConfig config;
  int total_count = 0;
  for (int b = 0; b < num_batches; ++b) {
    const int batch_offset = b * height * width;
    // Initialize memories that hold counters.
    total_count = kMaxNumInstance * kMaxNumSemantic;
    config = GetGpuLaunchConfig(total_count, d);
    SetToValue<<<config.block_count, config.thread_per_block, 0, d.stream()>>>(
        config.virtual_thread_count, 0, semantic_count_per_instance_device);

    total_count = kMaxNumSemantic;
    config = GetGpuLaunchConfig(total_count, d);
    SetToValue<<<config.block_count, config.thread_per_block, 0, d.stream()>>>(
        config.virtual_thread_count, 0, stuff_area_device);

    // Step 1: Collect semantic and instance mask stats. Done on GPU.
    total_count = height * width;
    config = GetGpuLaunchConfig(total_count, d);
    CollectPixelStats<<<config.block_count, config.thread_per_block, 0,
                        d.stream()>>>(
        config.virtual_thread_count, semantic_maps.data() + batch_offset,
        instance_maps.data() + batch_offset, is_thing_per_semantic_id_device,
        is_thing_per_pixel_device, semantic_count_per_instance_device,
        stuff_area_device);

    // Step 2: Loop over instance, find major "thing" semantic label, and
    //         reorder instance IDs to share same ID with different thing class.
    //         This process now runs on CPU.
    CreateLabelsPerInstance(d, semantic_count_per_instance_device,
                            labels_per_instance_device);

    // Step 3: Create panoptic prediction.
    total_count = width * height;
    config = GetGpuLaunchConfig(total_count, d);
    MergePredictions<<<config.block_count, config.thread_per_block, 0,
                       d.stream()>>>(
        config.virtual_thread_count, semantic_maps.data() + batch_offset,
        instance_maps.data() + batch_offset, is_thing_per_pixel_device,
        stuff_area_device, labels_per_instance_device, stuff_area_limit,
        label_divisor, void_label, parsing_maps.data() + batch_offset);
  }

  // Free all temp memories.
  d.deallocate_temp(is_thing_per_semantic_id_device);
  d.deallocate_temp(is_thing_per_pixel_device);
  d.deallocate_temp(semantic_count_per_instance_device);
  d.deallocate_temp(stuff_area_device);
  d.deallocate_temp(labels_per_instance_device);
}

}  // namespace functor
}  // namespace deeplab2
}  // namespace deeplab
}  // namespace tensorflow_models

#endif  // GOOGLE_CUDA