File size: 11,685 Bytes
506da10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
// Copyright 2021 The Deeplab2 Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <cstdint>
#define EIGEN_USE_THREADS

#define _USE_MATH_DEFINES

#include <algorithm>
#include <iterator>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <vector>

#include /*third_party*/"tensorflow/core/framework/op_kernel.h"
#include /*third_party*/"tensorflow/core/framework/register_types.h"
#include /*third_party*/"tensorflow/core/framework/tensor.h"
#include /*third_party*/"tensorflow/core/framework/tensor_shape.h"
#include /*third_party*/"tensorflow/core/framework/types.h"
#include /*third_party*/"tensorflow/core/lib/core/errors.h"
#include /*third_party*/"tensorflow/core/lib/core/status.h"
#include /*third_party*/"tensorflow/core/platform/logging.h"
#include /*third_party*/"merge_semantic_and_instance_maps_op_kernel.h" // local headers

namespace tensorflow_models {
namespace deeplab {
namespace deeplab2 {

namespace {

using tensorflow::Tensor;
using tensorflow::TensorShape;
using tensorflow::TTypes;
using tensorflow::errors::InvalidArgument;

}  // namespace

namespace functor {

// This function merges the semantic segmentation and class-agnostic
// instance segmentation to form the panoptic segmentation. In particular,
// the class label of each instance mask is inferred from the majority
// votes from the corresponding pixels in the semantic segmentation. This
// operation is first poposed in the DeeperLab paper and adopted by the
// Panoptic-DeepLab.
// - DeeperLab: Single-Shot Image Parser, T-J Yang, et al. arXiv:1902.05093.
// - Panoptic-DeepLab, B. Cheng, et al. In CVPR, 2020.
// Specialization of MergeSemanticAndInstanceMaps< for CPU.
template <>
void MergeSemanticAndInstanceMaps<Eigen::ThreadPoolDevice>::operator()(
    const Eigen::ThreadPoolDevice& d,
    typename TTypes<int32_t, 3>::ConstTensor semantic_maps,
    typename TTypes<int32_t, 3>::ConstTensor instance_maps,
    const std::unordered_set<int32_t>& thing_ids_set, int label_divisor,
    int stuff_area_limit, int void_label,
    typename TTypes<int32_t, 3>::Tensor parsing_maps) {
  const int num_batches = semantic_maps.dimension(0);
  const int height = semantic_maps.dimension(1);
  const int width = semantic_maps.dimension(2);

  for (int b = 0; b < num_batches; ++b) {
    // A vector to keep track of which pixels are predicted as `thing` or
    // `stuff` class.
    std::vector<bool> is_thing(height * width, true);

    // For each instance, find its corresponding histogram of semantic labels.
    // Suppose car label = 2 and road label = 5, and predicted instance 3 has
    // 5 pixels predicted as car and 20 pixels predicted as road. Then,
    // instance_id_to_semantic_histogram[3][2] = 5 and
    // instance_id_to_semantic_histogram[3][5] = 20.
    using InstanceIdType = int32_t;
    using SemanticLabelType = int32_t;
    using CountsType = int32_t;
    std::unordered_map<InstanceIdType,
                       std::unordered_map<SemanticLabelType, CountsType>>
        instance_id_to_semantic_histogram;
    // A map from stuff label to area.
    std::unordered_map<SemanticLabelType, CountsType> stuff_label_to_area;
    for (int h = 0; h < height; ++h) {
      for (int w = 0; w < width; ++w) {
        const int semantic_val = semantic_maps(b, h, w);
        if (thing_ids_set.find(semantic_val) == thing_ids_set.end()) {
          // Skip if it is `stuff`.
          is_thing[w + width * h] = false;
          ++stuff_label_to_area[semantic_val];
          continue;
        }
        const int instance_val = instance_maps(b, h, w);
        ++instance_id_to_semantic_histogram[instance_val][semantic_val];
      }
    }
    // Keep track of how many instances for each semantic_label.
    std::unordered_map<SemanticLabelType, CountsType>
        semantic_label_to_instance_counts;
    // Find the new semantic label and instance id for each instance. We use
    // majority vote to find the new semantic label while reorder the instance
    // id in the following way. In the original instance map, every instance
    // has a different instance id. In the new instance map, every instance
    // `in the same semantic class` should have a different id, but instances
    // `in different semantic classes` can have the same instance id. This
    // reduces the maximum instance label value and avoids the problem of
    // combining the two maps with the label_divisor.
    std::unordered_map<InstanceIdType,
                       std::pair<SemanticLabelType, InstanceIdType>>
        instance_id_to_new_semantic_label_and_instance_id;
    for (const auto& instance_to_histogram :
         instance_id_to_semantic_histogram) {
      const int instance_val = instance_to_histogram.first;
      const std::unordered_map<SemanticLabelType, CountsType>
          semantic_histogram = instance_to_histogram.second;
      int semantic_label = -1;
      int max_count = 0;
      // Find the majority semantic label.
      for (const auto& semantic_to_count : semantic_histogram) {
        // Break ties deterministically by select the smaller semantic label.
        if (semantic_to_count.second > max_count ||
            (semantic_to_count.second == max_count &&
             semantic_to_count.first < semantic_label)) {
          max_count = semantic_to_count.second;
          semantic_label = semantic_to_count.first;
        }
      }
      ++semantic_label_to_instance_counts[semantic_label];
      // For `thing` class, we set instance id starting from 1, while for
      // `stuff` class, we use instance id 0.
      instance_id_to_new_semantic_label_and_instance_id[instance_val] = {
          semantic_label, semantic_label_to_instance_counts[semantic_label]};
    }
    // Create a new semantic map by assigning the majority semantic label for
    // each instance.
    std::vector<SemanticLabelType> semantic_map(height * width);
    // Create a new instance map by assigning ordered instance id's.
    std::vector<InstanceIdType> instance_map(height * width);
    for (int h = 0; h < height; ++h) {
      for (int w = 0; w < width; ++w) {
        const int pixel = w + width * h;
        if (is_thing[pixel]) {
          const int instance_val = instance_maps(b, h, w);
          // Assign the majority semantic vote in the new semantic map, and
          // reorder the instance id in the new instance map.
          std::tie(semantic_map[pixel], instance_map[pixel]) =
              instance_id_to_new_semantic_label_and_instance_id[instance_val];
        } else {
          // If current pixel belongs to `stuff` class, keep the same semantic
          // label in the new semantic map. We also check if its area is
          // smaller than the stuff_area_limit_ or not. If true, we re-assign
          // the segment with void_label_.
          const int semantic_val = semantic_maps(b, h, w);
          if (stuff_area_limit > 0 &&
              stuff_label_to_area[semantic_val] <= stuff_area_limit) {
            semantic_map[pixel] = void_label;
          } else {
            semantic_map[pixel] = semantic_val;
          }
          // If current pixel belongs to `stuff` class, assign 0 in the new
          // instance map.
          instance_map[pixel] = 0;
        }
      }
    }
    // Merge those semantic map and instance map.
    for (int h = 0; h < height; ++h) {
      for (int w = 0; w < width; ++w) {
        const int pixel = w + width * h;
        parsing_maps(b, h, w) =
            semantic_map[pixel] * label_divisor + instance_map[pixel];
      }
    }
  }
}

template <>
std::unordered_set<int32_t> Convert1DInt32TensorToSet(
    const Eigen::ThreadPoolDevice& d, const Tensor& tensor) {
  std::unordered_set<int32_t> target_set;
  const int n_vals = tensor.dim_size(0);
  typename TTypes<int32_t, 1>::ConstTensor tensor_data =
      tensor.tensor<int32_t, 1>();
  for (int i = 0; i < n_vals; i++) {
    target_set.insert(tensor_data(i));
  }

  return target_set;
}

}  // namespace functor

template <typename Device>
class MergeSemanticAndInstanceMapsOp : public tensorflow::OpKernel {
 public:
  explicit MergeSemanticAndInstanceMapsOp(
      tensorflow::OpKernelConstruction* context)
      : OpKernel(context) {
    OP_REQUIRES_OK(context, context->GetAttr("label_divisor", &label_divisor_));
    OP_REQUIRES(context, label_divisor_ > 0,
                InvalidArgument("Label divisor must be positive."));
    OP_REQUIRES_OK(context,
                   context->GetAttr("stuff_area_limit", &stuff_area_limit_));
    OP_REQUIRES(context, stuff_area_limit_ >= 0,
                InvalidArgument("Stuff area limit must be non-negative."));
    OP_REQUIRES_OK(context, context->GetAttr("void_label", &void_label_));
    OP_REQUIRES(context, void_label_ >= 0,
                InvalidArgument("Void label must be non-negative."));
  }

  void Compute(tensorflow::OpKernelContext* context) override {
    // Extract the inputs.
    const Tensor& semantic_maps = context->input(0);
    const Tensor& instance_maps = context->input(1);
    const Tensor& thing_ids_tensor = context->input(2);

    // Convert thing_ids_tensor into a set.
    std::unordered_set<int32_t> thing_ids_set =
        functor::Convert1DInt32TensorToSet(context->eigen_device<Device>(),
                                           thing_ids_tensor);

    // Extract the constants.
    const int batch = semantic_maps.dim_size(0);
    const int height = semantic_maps.dim_size(1);
    const int width = semantic_maps.dim_size(2);

    // Check input shapes.
    OP_REQUIRES(context,
                instance_maps.dim_size(0) == batch &&
                    instance_maps.dim_size(1) == height &&
                    instance_maps.dim_size(2) == width,
                InvalidArgument(
                    "Expect semantic and instance maps have the same shape.",
                    instance_maps.shape().DebugString()));

    Tensor* parsing_maps = nullptr;
    OP_REQUIRES_OK(context,
                   context->allocate_output(
                       0, TensorShape({batch, height, width}), &parsing_maps));

    functor::MergeSemanticAndInstanceMaps<Device>()(
        context->eigen_device<Device>(), semantic_maps.tensor<int32_t, 3>(),
        instance_maps.tensor<int32_t, 3>(), thing_ids_set, label_divisor_,
        stuff_area_limit_, void_label_, parsing_maps->tensor<int32_t, 3>());
  }

 private:
  // Label divisor, the value used to combine the semantic and instance map to
  // generate the parsing map.
  int label_divisor_;

  // Stuff area limit is used to remove predicted stuff segments whose area are
  // smaller than it.
  int stuff_area_limit_;

  // Removed predicted stuff segments are re-assigned with void label.
  int void_label_;
};

REGISTER_KERNEL_BUILDER(
    Name("MergeSemanticAndInstanceMaps").Device(tensorflow::DEVICE_CPU),
    MergeSemanticAndInstanceMapsOp<Eigen::ThreadPoolDevice>);

#ifdef GOOGLE_CUDA
REGISTER_KERNEL_BUILDER(
    Name("MergeSemanticAndInstanceMaps").Device(tensorflow::DEVICE_GPU),
    MergeSemanticAndInstanceMapsOp<Eigen::GpuDevice>)
#endif  // GOOGLE_CUDA

}  // namespace deeplab2
}  // namespace deeplab
}  // namespace tensorflow_models