File size: 5,501 Bytes
506da10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Test for panoptic_deeplab.py."""
import numpy as np
import tensorflow as tf

from deeplab2.model.post_processor import panoptic_deeplab


class PostProcessingTest(tf.test.TestCase):

  def test_py_func_merge_semantic_and_instance_maps_can_run(self):
    batch = 1
    height = 5
    width = 5
    semantic_prediction = tf.random.uniform((batch, height, width),
                                            minval=0,
                                            maxval=20,
                                            dtype=tf.int32)
    instance_maps = tf.random.uniform((batch, height, width),
                                      minval=0,
                                      maxval=3,
                                      dtype=tf.int32)
    thing_class_ids = tf.convert_to_tensor([1, 2, 3])
    label_divisor = 256
    stuff_area_limit = 3
    void_label = 255
    panoptic_prediction = panoptic_deeplab._merge_semantic_and_instance_maps(
        semantic_prediction, instance_maps, thing_class_ids, label_divisor,
        stuff_area_limit, void_label)
    self.assertListEqual(semantic_prediction.get_shape().as_list(),
                         panoptic_prediction.get_shape().as_list())

  def test_merge_semantic_and_instance_maps_with_a_simple_example(self):
    semantic_prediction = tf.convert_to_tensor(
        [[[0, 0, 0, 0],
          [0, 1, 1, 0],
          [0, 2, 2, 0],
          [2, 2, 3, 3]]], dtype=tf.int32)
    instance_maps = tf.convert_to_tensor(
        [[[0, 0, 0, 0],
          [0, 0, 0, 0],
          [0, 1, 1, 0],
          [2, 2, 3, 3]]], dtype=tf.int32)
    thing_class_ids = tf.convert_to_tensor([2, 3])
    label_divisor = 256
    stuff_area_limit = 3
    void_label = 255
    # The expected_panoptic_prediction is computed as follows.
    # For `thing` segmentation, instance 1, 2, and 3 are kept, but instance 3
    # will have a new instance ID 1, since it is the first instance in its
    # own semantic label.
    # For `stuff` segmentation, class-0 region is kept, while class-1 region
    # is re-labeled as `void_label * label_divisor` since its area is smaller
    # than stuff_area_limit.
    expected_panoptic_prediction = tf.convert_to_tensor(
        [[[0, 0, 0, 0],
          [0, void_label * label_divisor, void_label * label_divisor, 0],
          [0, 2 * label_divisor + 1, 2 * label_divisor + 1, 0],
          [2 * label_divisor + 2, 2 * label_divisor + 2, 3 * label_divisor + 1,
           3 * label_divisor + 1]]], dtype=tf.int32)
    panoptic_prediction = panoptic_deeplab._merge_semantic_and_instance_maps(
        semantic_prediction, instance_maps, thing_class_ids, label_divisor,
        stuff_area_limit, void_label)
    np.testing.assert_equal(expected_panoptic_prediction.numpy(),
                            panoptic_prediction.numpy())

  def test_gets_panoptic_predictions_with_score(self):
    batch = 1
    height = 5
    width = 5
    classes = 3

    semantic_logits = tf.random.uniform((batch, 1, 1, classes))
    semantic_logits = tf.tile(semantic_logits, (1, height, width, 1))

    center_heatmap = tf.convert_to_tensor([
        [1.0, 0.0, 0.0, 0.0, 0.0],
        [0.8, 0.0, 0.0, 0.0, 0.0],
        [0.0, 0.0, 0.0, 0.0, 0.0],
        [0.0, 0.0, 0.0, 0.1, 0.7],
        [0.0, 0.0, 0.0, 0.0, 0.2],
    ],
                                          dtype=tf.float32)
    center_heatmap = tf.expand_dims(center_heatmap, 0)
    center_heatmap = tf.expand_dims(center_heatmap, 3)

    center_offsets = tf.zeros((batch, height, width, 2))
    center_threshold = 0.0
    thing_class_ids = tf.range(classes)  # No "stuff" classes.
    label_divisor = 256
    stuff_area_limit = 16
    void_label = classes
    nms_kernel_size = 3
    keep_k_centers = 2
    merge_semantic_and_instance_with_tf_op = True

    result = panoptic_deeplab._get_panoptic_predictions(
        semantic_logits, center_heatmap, center_offsets, center_threshold,
        thing_class_ids, label_divisor, stuff_area_limit, void_label,
        nms_kernel_size, keep_k_centers, merge_semantic_and_instance_with_tf_op)
    instance_maps = result[2].numpy()
    instance_scores = result[4].numpy()

    self.assertSequenceEqual(instance_maps.shape, (batch, height, width))
    expected_instances = [[
        [1, 1, 1, 1, 2],
        [1, 1, 1, 2, 2],
        [1, 1, 2, 2, 2],
        [1, 2, 2, 2, 2],
        [1, 2, 2, 2, 2],
    ]]
    np.testing.assert_array_equal(instance_maps, expected_instances)

    self.assertSequenceEqual(instance_scores.shape, (batch, height, width))
    expected_instance_scores = [[
        [1.0, 1.0, 1.0, 1.0, 0.7],
        [1.0, 1.0, 1.0, 0.7, 0.7],
        [1.0, 1.0, 0.7, 0.7, 0.7],
        [1.0, 0.7, 0.7, 0.7, 0.7],
        [1.0, 0.7, 0.7, 0.7, 0.7],
    ]]
    np.testing.assert_array_almost_equal(instance_scores,
                                         expected_instance_scores)


if __name__ == '__main__':
  tf.test.main()