File size: 10,978 Bytes
506da10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This file contains functions to post-process Motion-DeepLab results."""
from typing import Tuple
import tensorflow as tf
def assign_instances_to_previous_tracks(
prev_centers: tf.Tensor,
current_centers: tf.Tensor,
heatmap: tf.Tensor,
offsets: tf.Tensor,
panoptic_map: tf.Tensor,
next_id: tf.Tensor,
label_divisor: int,
sigma=7) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]:
"""Greedy assignment of current centers to previous centers.
Current centers are selected in decreasing order of confidence (heatmap
scores). These centers are transformed with the offsets and assigned to
previous centers.
Args:
prev_centers: A tf.Tensor containing previous centers of shape [Np, 5]. This
tensor contains:
[0]: The x-coordinate.
[1]: The y-coordinate.
[2]: The panoptic ID.
[3]: The geometric mean of width and height of the instance mask.
[4]: The number of frames that no new masks got assigned to this center.
current_centers: A tf.Tensor containing centers of current frame of shape
[Nc, 5]. This tensor contains:
[0]: The x-coordinate.
[1]: The y-coordinate.
[2]: The panoptic ID.
[3]: The geometric mean of width and height of the instance mask.
[4]: The number of frames that no new masks got assigned to this center.
heatmap: A tf.Tensor of shape [batch, height, width] containing the center
heatmap.
offsets: A tf.Tensor of shape [batch, height, width, 2] containing the
center offsets.
panoptic_map: A tf.Tensor of shape [batch, height, width] containing the
panoptic segmentation.
next_id: A tf.Tensor of shape [1] containing the next ID.
label_divisor: An integer specifying the label divisor for panoptic IDs.
sigma: An optional integer specifying the number of frames that unmatched
centers should be kept (default: 7).
Returns:
A tuple of three tf.Tensor:
1. The updated panoptic segmentation map that contains track IDs.
2. The updated tensor containing all current centers (including unmatched
previous ones).
3. The updated next ID that can be used for new tracks.
"""
# Switch x and y coordinates for indexing.
center_indices = tf.concat(
[tf.zeros([tf.shape(current_centers)[0], 1], dtype=tf.int32),
current_centers[:, 1:2], current_centers[:, 0:1]],
axis=1)
confidence_scores = tf.gather_nd(heatmap, center_indices)
scores = tf.argsort(confidence_scores, direction='DESCENDING')
cond = lambda i, *_: i < tf.shape(center_indices)[0]
def body(i, current_centers_loop, prev_centers_loop, new_panoptic_map_loop,
next_id_loop):
row_index = scores[i]
i = tf.add(i, 1)
center_id = current_centers_loop[row_index, 2]
center_location = current_centers_loop[row_index, :2]
center_offset_yx = offsets[0, center_location[1], center_location[0], :]
center_offset_xy = center_offset_yx[::-1]
center_location = center_offset_xy + tf.cast(center_location, tf.float32)
center_sem_id = center_id // label_divisor
center_mask = tf.equal(panoptic_map, center_id)
prev_centers_class = prev_centers_loop[:, 2] // label_divisor
prev_centers_with_same_class = tf.squeeze(
tf.cast(
tf.gather(
prev_centers_loop,
tf.where(tf.equal(prev_centers_class, center_sem_id)),
axis=0), tf.float32),
axis=1)
# Check if there are still unassigned previous centers of the same class.
if tf.shape(prev_centers_with_same_class)[0] > 0:
# For efficieny reasons, we do not take the sqrt when we compute the
# minimal distances. See render_panoptic_map_as_heatmap as well.
distances = tf.reduce_sum(
tf.square(prev_centers_with_same_class[:, :2] - center_location),
axis=1)
prev_center_index = tf.math.argmin(
distances, axis=0, output_type=tf.int32)
min_dist = distances[prev_center_index]
# If previous center is within a certain range, continue track.
if min_dist < prev_centers_with_same_class[prev_center_index, 3]:
new_center_id = tf.cast(
prev_centers_with_same_class[prev_center_index, 2], dtype=tf.int32)
shape = new_panoptic_map_loop.get_shape()
new_panoptic_map_loop = tf.where(center_mask, new_center_id,
new_panoptic_map_loop)
new_panoptic_map_loop.set_shape(shape)
current_centers_loop = tf.tensor_scatter_nd_update(
current_centers_loop, tf.expand_dims([row_index, 2], 0),
[new_center_id])
# Remove previous center.
prev_centers_loop = tf.squeeze(
tf.gather(
prev_centers_loop,
tf.where(tf.not_equal(prev_centers_loop[:, 2], new_center_id)),
axis=0),
axis=1)
return (i, current_centers_loop, prev_centers_loop,
new_panoptic_map_loop, next_id_loop)
else:
# Assign new track ID
new_center_id = center_sem_id * label_divisor + next_id_loop
shape = new_panoptic_map_loop.get_shape()
new_panoptic_map_loop = tf.where(center_mask, new_center_id,
new_panoptic_map_loop)
new_panoptic_map_loop.set_shape(shape)
current_centers_loop = tf.tensor_scatter_nd_update(
current_centers_loop, tf.expand_dims([row_index, 2], 0),
[new_center_id])
next_id_loop += 1
return (i, current_centers_loop, prev_centers_loop,
new_panoptic_map_loop, next_id_loop)
else:
# Assign new track ID
new_center_id = center_sem_id * label_divisor + next_id_loop
shape = new_panoptic_map_loop.get_shape()
new_panoptic_map_loop = tf.where(center_mask, new_center_id,
new_panoptic_map_loop)
new_panoptic_map_loop.set_shape(shape)
current_centers_loop = tf.tensor_scatter_nd_update(
current_centers_loop, tf.expand_dims([row_index, 2], 0),
[new_center_id])
next_id_loop += 1
return (i, current_centers_loop, prev_centers_loop, new_panoptic_map_loop,
next_id_loop)
loop_start_index = tf.constant(0)
(_, current_centers,
unmatched_centers, new_panoptic_map, next_id) = tf.while_loop(
cond, body,
(loop_start_index, current_centers, prev_centers, panoptic_map,
next_id))
# Keep unmatched centers for sigma frames.
if tf.shape(unmatched_centers)[0] > 0:
current_centers = tf.concat([current_centers, unmatched_centers], axis=0)
number_centers = tf.shape(current_centers)[0]
indices_row = tf.range(number_centers, dtype=tf.int32)
indices_column = tf.repeat([4], number_centers, axis=0)
indices = tf.stack([indices_row, indices_column], axis=1)
current_centers = tf.tensor_scatter_nd_add(
current_centers, indices,
tf.repeat([1], number_centers, axis=0))
# Remove centers after sigma frames.
current_centers = tf.squeeze(
tf.gather(
current_centers,
tf.where(tf.not_equal(current_centers[:, 4], sigma)),
axis=0),
axis=1)
return new_panoptic_map, current_centers, next_id
def render_panoptic_map_as_heatmap(
panoptic_map: tf.Tensor, sigma: int, label_divisor: int,
void_label: int) -> Tuple[tf.Tensor, tf.Tensor]:
"""Extracts centers from panoptic map and renders as heatmap."""
gaussian_size = 6 * sigma + 3
x = tf.range(gaussian_size, dtype=tf.float32)
y = tf.expand_dims(x, axis=1)
x0, y0 = 3 * sigma + 1, 3 * sigma + 1
gaussian = tf.math.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma**2))
gaussian = tf.cast(tf.reshape(gaussian, [-1]), tf.float32)
height = tf.shape(panoptic_map)[1]
width = tf.shape(panoptic_map)[2]
# Pad center to make boundary handling easier.
center_pad_begin = int(round(3 * sigma + 1))
center_pad_end = int(round(3 * sigma + 2))
center_pad = center_pad_begin + center_pad_end
center = tf.zeros((height + center_pad, width + center_pad))
unique_ids, _ = tf.unique(tf.reshape(panoptic_map, [-1]))
centers_and_ids = tf.TensorArray(
tf.int32, size=0, dynamic_size=True, clear_after_read=False)
counter = tf.zeros([], dtype=tf.int32)
for panoptic_id in unique_ids:
semantic_id = panoptic_id // label_divisor
# Filter out IDs that should be ignored, are stuff classes or crowd.
# Stuff classes and crowd regions both have IDs of the form panoptic_id =
# semantic_id * label_divisor
if semantic_id == void_label or panoptic_id % label_divisor == 0:
continue
# Convert [[0, y0, x0], ...] to [[0, ...], [y0, ...], [x0, ...]].
mask_index = tf.cast(
tf.transpose(tf.where(panoptic_map == panoptic_id)), tf.float32)
mask_size = (
tf.reduce_max(mask_index, axis=1) - tf.reduce_min(mask_index, axis=1))
# The radius is defined as the geometric mean of width and height.
# For efficieny reasons, we do not take the sqrt when we compute the minimal
# distances. See assign_instances_to_previous_tracks as well.
mask_radius = tf.cast(tf.round(mask_size[1] * mask_size[2]), tf.int32)
centers = tf.reduce_mean(mask_index, axis=1)
center_x = tf.cast(tf.round(centers[2]), tf.int32)
center_y = tf.cast(tf.round(centers[1]), tf.int32)
centers_and_ids = centers_and_ids.write(
counter,
[center_x, center_y, tf.cast(panoptic_id, tf.int32), mask_radius, 0])
counter += 1
# Due to the padding with center_pad_begin in center, the computed center
# becomes the upper left corner in the center tensor.
upper_left = center_x, center_y
bottom_right = (upper_left[0] + gaussian_size,
upper_left[1] + gaussian_size)
indices_x, indices_y = tf.meshgrid(
tf.range(upper_left[0], bottom_right[0]),
tf.range(upper_left[1], bottom_right[1]))
indices = tf.transpose(
tf.stack([tf.reshape(indices_y, [-1]),
tf.reshape(indices_x, [-1])]))
center = tf.tensor_scatter_nd_max(
center, indices, gaussian, name='center_scatter')
center = center[center_pad_begin:(center_pad_begin + height),
center_pad_begin:(center_pad_begin + width)]
return tf.expand_dims(center, axis=0), centers_and_ids.stack()
|