File size: 1,725 Bytes
506da10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for axial_resnet."""
import numpy as np
import tensorflow as tf
from deeplab2.model.encoder import axial_resnet
class AxialResNetTest(tf.test.TestCase):
def test_axial_resnet_correct_output_shape(self):
model = axial_resnet.AxialResNet('max_deeplab_s')
endpoints = model(tf.zeros([2, 65, 65, 3]), training=False)
self.assertListEqual(endpoints['backbone_output'].get_shape().as_list(),
[2, 5, 5, 2048])
self.assertListEqual(
endpoints['transformer_class_feature'].get_shape().as_list(),
[2, 128, 256])
self.assertListEqual(
endpoints['transformer_mask_feature'].get_shape().as_list(),
[2, 128, 256])
self.assertListEqual(endpoints['feature_panoptic'].get_shape().as_list(),
[2, 17, 17, 256])
self.assertListEqual(endpoints['feature_semantic'].get_shape().as_list(),
[2, 5, 5, 2048])
num_params = np.sum(
[np.prod(v.get_shape().as_list()) for v in model.trainable_weights])
self.assertEqual(num_params, 61726624)
if __name__ == '__main__':
tf.test.main()
|