Spaces:
Running
Running
File size: 24,232 Bytes
3eb00a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 |
"""
Project Importer - Standalone module for importing projects from various sources
This module provides functionality to import projects from:
- HuggingFace Spaces
- HuggingFace Models
- GitHub Repositories
No Gradio dependency required - pure Python implementation.
"""
import os
import re
import requests
from typing import Dict, List, Optional, Tuple
from urllib.parse import urlparse
from huggingface_hub import HfApi, list_repo_files
class ProjectImporter:
"""Main class for importing projects from various sources"""
def __init__(self, hf_token: Optional[str] = None):
"""
Initialize the ProjectImporter.
Args:
hf_token: Optional HuggingFace token for authenticated requests
"""
self.hf_token = hf_token or os.environ.get("HF_TOKEN")
self.api = HfApi(token=self.hf_token)
def import_from_url(self, url: str) -> Dict[str, any]:
"""
Import a project from any supported URL.
Args:
url: URL to import from (HF Space, HF Model, or GitHub)
Returns:
Dictionary containing:
- status: Success/error message
- code: Extracted code content
- language: Detected language/framework
- url: Original URL
- metadata: Additional metadata
"""
if not url or not url.strip():
return {
"status": "error",
"message": "Please provide a valid URL",
"code": "",
"language": "unknown",
"url": url,
"metadata": {}
}
# Parse URL to determine source type
kind, meta = self._parse_url(url)
if kind == "hf_space":
return self.import_space(meta["username"], meta["project"])
elif kind == "hf_model":
return self.import_model(meta["repo_id"])
elif kind == "github":
return self.import_github_repo(meta["owner"], meta["repo"])
else:
return {
"status": "error",
"message": "Unsupported URL format. Supported: HF Spaces, HF Models, GitHub repos",
"code": "",
"language": "unknown",
"url": url,
"metadata": {}
}
def import_space(self, username: str, project_name: str) -> Dict[str, any]:
"""
Import a HuggingFace Space.
Args:
username: HuggingFace username
project_name: Space name
Returns:
Dictionary with imported project data
"""
try:
space_id = f"{username}/{project_name}"
space_info = self.api.space_info(space_id)
# Detect if this is a transformers.js space
if space_info.sdk == "static" and self._is_transformers_js_space(username, project_name):
code, files = self._fetch_transformers_js_files(username, project_name)
return {
"status": "success",
"message": f"Successfully imported transformers.js space: {space_id}",
"code": code,
"language": "transformers.js",
"url": f"https://huggingface.co/spaces/{space_id}",
"metadata": {
"sdk": "static",
"type": "transformers.js",
"files": files
}
}
# Handle multi-file spaces
files = self._fetch_all_space_files(username, project_name, space_info.sdk)
if files:
code = self._format_multi_file_content(files, username, project_name, space_info.sdk)
language = self._detect_language_from_sdk(space_info.sdk)
return {
"status": "success",
"message": f"Successfully imported space: {space_id}",
"code": code,
"language": language,
"url": f"https://huggingface.co/spaces/{space_id}",
"metadata": {
"sdk": space_info.sdk,
"files": list(files.keys())
}
}
else:
# Fallback to single file
main_file, content = self._fetch_main_file(username, project_name, space_info.sdk)
if content:
return {
"status": "success",
"message": f"Successfully imported space: {space_id}",
"code": content,
"language": self._detect_language_from_sdk(space_info.sdk),
"url": f"https://huggingface.co/spaces/{space_id}",
"metadata": {
"sdk": space_info.sdk,
"main_file": main_file
}
}
else:
return {
"status": "error",
"message": f"Could not find main file in space {space_id}",
"code": "",
"language": "unknown",
"url": f"https://huggingface.co/spaces/{space_id}",
"metadata": {"sdk": space_info.sdk}
}
except Exception as e:
return {
"status": "error",
"message": f"Failed to import space: {str(e)}",
"code": "",
"language": "unknown",
"url": f"https://huggingface.co/spaces/{username}/{project_name}",
"metadata": {}
}
def import_model(self, model_id: str, prefer_local: bool = False) -> Dict[str, any]:
"""
Import a HuggingFace Model.
Args:
model_id: HuggingFace model ID (e.g., "meta-llama/Llama-2-7b")
prefer_local: If True, prefer local inference code over serverless
Returns:
Dictionary with imported model data
"""
try:
# Get model info
model_info = self.api.model_info(model_id)
pipeline_tag = getattr(model_info, "pipeline_tag", None)
# Try to get inference provider code
inference_code = self._generate_inference_code(model_id, pipeline_tag)
# Try to get transformers/diffusers code from README
readme_code = None
try:
readme = self._fetch_hf_model_readme(model_id)
if readme:
_, readme_code = self._extract_code_from_markdown(readme)
except:
pass
# Determine which code to return
if inference_code and readme_code:
code = readme_code if prefer_local else inference_code
code_type = "local" if prefer_local else "inference"
return {
"status": "success",
"message": f"Successfully imported model: {model_id} ({code_type} code)",
"code": code,
"language": "python",
"url": f"https://huggingface.co/{model_id}",
"metadata": {
"pipeline_tag": pipeline_tag,
"code_type": code_type,
"has_alternatives": True,
"inference_code": inference_code,
"local_code": readme_code
}
}
elif inference_code:
return {
"status": "success",
"message": f"Successfully imported model: {model_id} (inference code)",
"code": inference_code,
"language": "python",
"url": f"https://huggingface.co/{model_id}",
"metadata": {
"pipeline_tag": pipeline_tag,
"code_type": "inference"
}
}
elif readme_code:
return {
"status": "success",
"message": f"Successfully imported model: {model_id} (local code)",
"code": readme_code,
"language": "python",
"url": f"https://huggingface.co/{model_id}",
"metadata": {
"pipeline_tag": pipeline_tag,
"code_type": "local"
}
}
else:
return {
"status": "error",
"message": f"No code found for model: {model_id}",
"code": "",
"language": "python",
"url": f"https://huggingface.co/{model_id}",
"metadata": {"pipeline_tag": pipeline_tag}
}
except Exception as e:
return {
"status": "error",
"message": f"Failed to import model: {str(e)}",
"code": "",
"language": "python",
"url": f"https://huggingface.co/{model_id}",
"metadata": {}
}
def import_github_repo(self, owner: str, repo: str) -> Dict[str, any]:
"""
Import a GitHub repository.
Args:
owner: GitHub username/organization
repo: Repository name
Returns:
Dictionary with imported repository data
"""
try:
readme = self._fetch_github_readme(owner, repo)
if not readme:
return {
"status": "error",
"message": f"Could not fetch README from {owner}/{repo}",
"code": "",
"language": "python",
"url": f"https://github.com/{owner}/{repo}",
"metadata": {}
}
lang, code = self._extract_code_from_markdown(readme)
if code:
return {
"status": "success",
"message": f"Successfully imported code from {owner}/{repo}",
"code": code,
"language": lang or "python",
"url": f"https://github.com/{owner}/{repo}",
"metadata": {
"source": "github",
"detected_language": lang
}
}
else:
return {
"status": "error",
"message": f"No relevant code found in README of {owner}/{repo}",
"code": "",
"language": "python",
"url": f"https://github.com/{owner}/{repo}",
"metadata": {}
}
except Exception as e:
return {
"status": "error",
"message": f"Failed to import repository: {str(e)}",
"code": "",
"language": "python",
"url": f"https://github.com/{owner}/{repo}",
"metadata": {}
}
# ==================== Private Helper Methods ====================
def _parse_url(self, url: str) -> Tuple[str, Optional[Dict]]:
"""Parse URL and detect source type"""
try:
parsed = urlparse(url.strip())
netloc = (parsed.netloc or "").lower()
path = (parsed.path or "").strip("/")
# HuggingFace Spaces
if ("huggingface.co" in netloc or "hf.co" in netloc) and path.startswith("spaces/"):
parts = path.split("/")
if len(parts) >= 3:
return "hf_space", {"username": parts[1], "project": parts[2]}
# HuggingFace Model
if ("huggingface.co" in netloc or "hf.co" in netloc) and not path.startswith(("spaces/", "datasets/")):
parts = path.split("/")
if len(parts) >= 2:
return "hf_model", {"repo_id": f"{parts[0]}/{parts[1]}"}
# GitHub Repository
if "github.com" in netloc:
parts = path.split("/")
if len(parts) >= 2:
return "github", {"owner": parts[0], "repo": parts[1]}
except Exception:
pass
return "unknown", None
def _is_transformers_js_space(self, username: str, project_name: str) -> bool:
"""Check if space is a transformers.js app"""
try:
files = list_repo_files(
repo_id=f"{username}/{project_name}",
repo_type="space",
token=self.hf_token
)
has_html = any('index.html' in f for f in files)
has_js = any('index.js' in f for f in files)
has_css = any('style.css' in f for f in files)
return has_html and has_js and has_css
except:
return False
def _fetch_transformers_js_files(self, username: str, project_name: str) -> Tuple[str, Dict]:
"""Fetch transformers.js files and combine them"""
files = {}
file_names = ['index.html', 'index.js', 'style.css']
for file_name in file_names:
try:
content_path = self.api.hf_hub_download(
repo_id=f"{username}/{project_name}",
filename=file_name,
repo_type="space"
)
with open(content_path, 'r', encoding='utf-8') as f:
files[file_name] = f.read()
except:
files[file_name] = ""
# Combine files
combined = f"""=== index.html ===
{files.get('index.html', '')}
=== index.js ===
{files.get('index.js', '')}
=== style.css ===
{files.get('style.css', '')}"""
return combined, files
def _fetch_all_space_files(self, username: str, project_name: str, sdk: str) -> Optional[Dict[str, str]]:
"""Fetch all relevant files from a space"""
try:
space_id = f"{username}/{project_name}"
files = list_repo_files(repo_id=space_id, repo_type="space", token=self.hf_token)
# Define file extensions to include
include_extensions = {
'.py', '.js', '.html', '.css', '.json', '.txt', '.yml', '.yaml',
'.toml', '.cfg', '.ini', '.sh', '.md'
}
# Filter files
relevant_files = [
f for f in files
if any(f.endswith(ext) for ext in include_extensions)
and not f.startswith('.')
and not f.startswith('__pycache__')
]
# Limit number of files
if len(relevant_files) > 50:
relevant_files = relevant_files[:50]
# Fetch file contents
file_contents = {}
for file in relevant_files:
try:
file_path = self.api.hf_hub_download(
repo_id=space_id,
filename=file,
repo_type="space"
)
with open(file_path, 'r', encoding='utf-8') as f:
file_contents[file] = f.read()
except:
continue
return file_contents if file_contents else None
except:
return None
def _format_multi_file_content(self, files: Dict[str, str], username: str, project_name: str, sdk: str) -> str:
"""Format multi-file content"""
header = f"""IMPORTED PROJECT FROM HUGGING FACE SPACE
==============================================
Space: {username}/{project_name}
SDK: {sdk}
Files: {len(files)}
"""
file_sections = []
for filename, content in files.items():
file_sections.append(f"=== {filename} ===\n{content}")
return header + "\n\n".join(file_sections)
def _fetch_main_file(self, username: str, project_name: str, sdk: str) -> Tuple[Optional[str], Optional[str]]:
"""Fetch main file from space"""
file_patterns = self._get_file_patterns_for_sdk(sdk)
for file_pattern in file_patterns:
try:
content_path = self.api.hf_hub_download(
repo_id=f"{username}/{project_name}",
filename=file_pattern,
repo_type="space"
)
with open(content_path, 'r', encoding='utf-8') as f:
return file_pattern, f.read()
except:
continue
return None, None
def _get_file_patterns_for_sdk(self, sdk: str) -> List[str]:
"""Get file patterns to try based on SDK"""
patterns = {
"static": ["index.html"],
"gradio": ["app.py", "main.py", "gradio_app.py"],
"streamlit": [
"streamlit_app.py", "src/streamlit_app.py",
"app.py", "src/app.py",
"main.py", "src/main.py",
"Home.py", "src/Home.py"
]
}
return patterns.get(sdk, ["app.py", "main.py", "index.html"])
def _detect_language_from_sdk(self, sdk: str) -> str:
"""Detect language/framework from SDK"""
sdk_map = {
"gradio": "gradio",
"streamlit": "streamlit",
"static": "html",
"docker": "docker"
}
return sdk_map.get(sdk, "python")
def _generate_inference_code(self, model_id: str, pipeline_tag: Optional[str]) -> Optional[str]:
"""Generate inference provider code based on pipeline tag"""
if not pipeline_tag:
return None
templates = {
"text-generation": f'''import os
from huggingface_hub import InferenceClient
client = InferenceClient(api_key=os.environ["HF_TOKEN"])
completion = client.chat.completions.create(
model="{model_id}",
messages=[
{{"role": "user", "content": "What is the capital of France?"}}
],
)
print(completion.choices[0].message)''',
"text-to-image": f'''import os
from huggingface_hub import InferenceClient
client = InferenceClient(api_key=os.environ["HF_TOKEN"])
# output is a PIL.Image object
image = client.text_to_image(
"Astronaut riding a horse",
model="{model_id}",
)
# Save the image
image.save("output.png")''',
"automatic-speech-recognition": f'''import os
from huggingface_hub import InferenceClient
client = InferenceClient(api_key=os.environ["HF_TOKEN"])
with open("audio.mp3", "rb") as f:
audio_data = f.read()
result = client.automatic_speech_recognition(
audio_data,
model="{model_id}",
)
print(result)''',
"text-to-speech": f'''import os
from huggingface_hub import InferenceClient
client = InferenceClient(api_key=os.environ["HF_TOKEN"])
audio = client.text_to_speech(
"Hello world",
model="{model_id}",
)
# Save the audio
with open("output.mp3", "wb") as f:
f.write(audio)''',
}
return templates.get(pipeline_tag)
def _fetch_hf_model_readme(self, repo_id: str) -> Optional[str]:
"""Fetch README from HuggingFace model"""
try:
local_path = self.api.hf_hub_download(
repo_id=repo_id,
filename="README.md",
repo_type="model"
)
with open(local_path, "r", encoding="utf-8") as f:
return f.read()
except:
return None
def _fetch_github_readme(self, owner: str, repo: str) -> Optional[str]:
"""Fetch README from GitHub repository"""
urls = [
f"https://raw.githubusercontent.com/{owner}/{repo}/HEAD/README.md",
f"https://raw.githubusercontent.com/{owner}/{repo}/main/README.md",
f"https://raw.githubusercontent.com/{owner}/{repo}/master/README.md",
]
for url in urls:
try:
resp = requests.get(url, timeout=10)
if resp.status_code == 200 and resp.text:
return resp.text
except:
continue
return None
def _extract_code_from_markdown(self, markdown: str) -> Tuple[Optional[str], Optional[str]]:
"""Extract relevant code from markdown"""
if not markdown:
return None, None
# Find all code blocks
code_blocks = []
for match in re.finditer(r"```([\w+-]+)?\s*\n([\s\S]*?)```", markdown, re.IGNORECASE):
lang = (match.group(1) or "").lower()
code = match.group(2) or ""
code_blocks.append((lang, code.strip()))
# Score blocks based on relevance
def score_block(code: str) -> int:
score = 0
keywords = [
"from transformers", "import transformers", "pipeline(",
"AutoModel", "AutoTokenizer", "text-generation",
"from diffusers", "import diffusers", "DiffusionPipeline",
"StableDiffusion", "from gradio", "import gradio"
]
for kw in keywords:
if kw in code:
score += 1
score += min(len(code) // 200, 5)
return score
# Filter and sort
relevant = [
cb for cb in code_blocks
if any(kw in cb[1] for kw in ["transformers", "diffusers", "pipeline(", "gradio", "import"])
]
if relevant:
sorted_blocks = sorted(relevant, key=lambda x: score_block(x[1]), reverse=True)
return sorted_blocks[0][0] or "python", sorted_blocks[0][1]
return None, None
# ==================== CLI Interface ====================
def main():
"""CLI interface for project importer"""
import argparse
parser = argparse.ArgumentParser(
description="Import projects from HuggingFace Spaces, Models, or GitHub repos"
)
parser.add_argument("url", help="URL to import from")
parser.add_argument("-o", "--output", help="Output file to save code", default=None)
parser.add_argument("--prefer-local", action="store_true",
help="Prefer local inference code over serverless (for models)")
parser.add_argument("--token", help="HuggingFace token", default=None)
args = parser.parse_args()
# Initialize importer
importer = ProjectImporter(hf_token=args.token)
# Import project
print(f"Importing from: {args.url}")
print("-" * 60)
result = importer.import_from_url(args.url)
# Print results
print(f"Status: {result['status']}")
print(f"Message: {result['message']}")
print(f"Language: {result['language']}")
print(f"URL: {result['url']}")
if result.get('metadata'):
print(f"Metadata: {result['metadata']}")
print("-" * 60)
if result['code']:
if args.output:
with open(args.output, 'w', encoding='utf-8') as f:
f.write(result['code'])
print(f"Code saved to: {args.output}")
else:
print("Code:")
print("=" * 60)
print(result['code'])
print("=" * 60)
else:
print("No code to display")
if __name__ == "__main__":
main()
|