File size: 9,315 Bytes
b3b66bf
 
c919a10
53c7098
6aaa79e
59c62cc
b9f9a46
684bece
 
53c7098
c919a10
90a0c6e
af4bac7
0f3449e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c919a10
17829dc
0f3449e
 
 
 
 
 
17829dc
0f3449e
 
 
 
 
 
c919a10
af4bac7
81d02d1
 
f599584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
828cfdc
 
81d02d1
828cfdc
 
81d02d1
 
2af566a
17829dc
c919a10
828cfdc
 
 
 
 
2af566a
17829dc
828cfdc
 
 
 
 
 
 
53c7098
81d02d1
 
f599584
 
 
 
 
 
 
 
828cfdc
 
81d02d1
828cfdc
 
81d02d1
 
2af566a
17829dc
53c7098
828cfdc
 
 
 
 
2af566a
17829dc
828cfdc
 
 
 
 
 
 
8c97520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81d02d1
 
2af566a
17829dc
9452a52
8c97520
 
 
 
 
 
2af566a
17829dc
8c97520
 
 
 
 
 
 
 
 
59c62cc
 
2af566a
 
 
17829dc
59c62cc
b9f9a46
 
f6a6c6d
 
2af566a
17829dc
f6a6c6d
 
684bece
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2af566a
17829dc
684bece
 
 
 
 
 
2af566a
17829dc
684bece
 
 
 
 
 
 
 
 
 
 
 
 
 
f6a6c6d
684bece
be6d8c1
 
 
 
 
 
 
 
c919a10
8c87ef1
c919a10
b3b66bf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import gradio as gr
import gemini_gradio
import openai_gradio
import anthropic_gradio
import sambanova_gradio
import xai_gradio
import hyperbolic_gradio
import perplexity_gradio



with gr.Blocks(fill_height=True) as demo:
    with gr.Tab("Gemini"):
        with gr.Row():
            gemini_model = gr.Dropdown(
                choices=[
                    'gemini-1.5-flash',        # Fast and versatile performance
                    'gemini-1.5-flash-8b',     # High volume, lower intelligence tasks
                    'gemini-1.5-pro',           # Complex reasoning tasks
                    'gemini-exp-1114'          # Quality improvements
                ],
                value='gemini-1.5-pro',      # Default to the most advanced model
                label="Select Gemini Model",
                interactive=True
            )
        
        gemini_interface = gr.load(
            name=gemini_model.value,
            src=gemini_gradio.registry,
            fill_height=True
        )
        
        def update_gemini_model(new_model):
            return gr.load(
                name=new_model,
                src=gemini_gradio.registry,
                fill_height=True
            )
        
        gemini_model.change(
            fn=update_gemini_model,
            inputs=[gemini_model],
            outputs=[gemini_interface]
        )
    with gr.Tab("ChatGPT"):
        with gr.Row():
            model_choice = gr.Dropdown(
                choices=[
                    'gpt-4o',                     # Most advanced model
                    'gpt-4o-2024-08-06',          # Latest snapshot
                    'gpt-4o-2024-05-13',          # Original snapshot
                    'chatgpt-4o-latest',          # Latest ChatGPT version
                    'gpt-4o-mini',                # Small model
                    'gpt-4o-mini-2024-07-18',     # Latest mini version
                    'o1-preview',                 # Reasoning model
                    'o1-preview-2024-09-12',      # Latest o1 model snapshot
                    'o1-mini',                    # Faster reasoning model
                    'o1-mini-2024-09-12',         # Latest o1-mini model snapshot
                    'gpt-4-turbo',                # Latest GPT-4 Turbo model
                    'gpt-4-turbo-2024-04-09',     # Latest GPT-4 Turbo snapshot
                    'gpt-4-turbo-preview',         # GPT-4 Turbo preview model
                    'gpt-4-0125-preview',         # GPT-4 Turbo preview model for laziness
                    'gpt-4-1106-preview',         # Improved instruction following model
                    'gpt-4',                      # Standard GPT-4 model
                    'gpt-4-0613'                  # Snapshot of GPT-4 from June 2023
                ],
                value='gpt-4o',                 # Default to the most advanced model
                label="Select Model",
                interactive=True
            )
            
        chatgpt_interface = gr.load(
            name=model_choice.value,
            src=openai_gradio.registry,
            accept_token=True,
            fill_height=True
        )
        
        def update_model(new_model):
            return gr.load(
                name=new_model,
                src=openai_gradio.registry,
                accept_token=True,
                fill_height=True
            )
        
        model_choice.change(
            fn=update_model,
            inputs=[model_choice],
            outputs=[chatgpt_interface]
        )
    with gr.Tab("Claude"):
        with gr.Row():
            claude_model = gr.Dropdown(
                choices=[
                    'claude-3-5-sonnet-20241022',  # Latest Sonnet
                    'claude-3-5-haiku-20241022',   # Latest Haiku
                    'claude-3-opus-20240229',       # Opus
                    'claude-3-sonnet-20240229',     # Previous Sonnet
                    'claude-3-haiku-20240307'       # Previous Haiku
                ],
                value='claude-3-5-sonnet-20241022',  # Default to latest Sonnet
                label="Select Model",
                interactive=True
            )
            
        claude_interface = gr.load(
            name=claude_model.value,
            src=anthropic_gradio.registry,
            accept_token=True,
            fill_height=True
        )
        
        def update_claude_model(new_model):
            return gr.load(
                name=new_model,
                src=anthropic_gradio.registry,
                accept_token=True,
                fill_height=True
            )
        
        claude_model.change(
            fn=update_claude_model,
            inputs=[claude_model],
            outputs=[claude_interface]
        )
    with gr.Tab("Meta Llama"):
        with gr.Row():
            llama_model = gr.Dropdown(
                choices=[
                    'Meta-Llama-3.2-1B-Instruct',   # Llama 3.2 1B
                    'Meta-Llama-3.2-3B-Instruct',   # Llama 3.2 3B
                    'Llama-3.2-11B-Vision-Instruct',  # Llama 3.2 11B
                    'Llama-3.2-90B-Vision-Instruct',  # Llama 3.2 90B
                    'Meta-Llama-3.1-8B-Instruct',    # Llama 3.1 8B
                    'Meta-Llama-3.1-70B-Instruct',   # Llama 3.1 70B
                    'Meta-Llama-3.1-405B-Instruct'   # Llama 3.1 405B
                ],
                value='Llama-3.2-90B-Vision-Instruct',  # Default to the most advanced model
                label="Select Llama Model",
                interactive=True
            )
        
        llama_interface = gr.load(
            name=llama_model.value,
            src=sambanova_gradio.registry,
            accept_token=True,
            multimodal=True,
            fill_height=True
        )
        
        def update_llama_model(new_model):
            return gr.load(
                name=new_model,
                src=sambanova_gradio.registry,
                accept_token=True,
                multimodal=True,
                fill_height=True
            )
        
        llama_model.change(
            fn=update_llama_model,
            inputs=[llama_model],
            outputs=[llama_interface]
        )
        
        gr.Markdown("**Note:** You need to use a SambaNova API key from [SambaNova Cloud](https://cloud.sambanova.ai/).")
    with gr.Tab("Grok"):
        gr.load(
            name='grok-beta',
            src=xai_gradio.registry,
            accept_token=True,
            fill_height=True
        )
    with gr.Tab("Qwen2.5 72B"):
        gr.load(
            name='Qwen/Qwen2.5-72B-Instruct',
            src=hyperbolic_gradio.registry,
            accept_token=True,
            fill_height=True
        )
        gr.Markdown("**Note:** You need to use a Hyperbolic API key from [Hyperbolic](https://app.hyperbolic.xyz/).")
    with gr.Tab("Perplexity"):
        with gr.Row():
            perplexity_model = gr.Dropdown(
                choices=[
                    # Sonar Models (Online)
                    'llama-3.1-sonar-small-128k-online',    # 8B params
                    'llama-3.1-sonar-large-128k-online',    # 70B params
                    'llama-3.1-sonar-huge-128k-online',     # 405B params
                    # Sonar Models (Chat)
                    'llama-3.1-sonar-small-128k-chat',      # 8B params
                    'llama-3.1-sonar-large-128k-chat',      # 70B params
                    # Open Source Models
                    'llama-3.1-8b-instruct',                # 8B params
                    'llama-3.1-70b-instruct'                # 70B params
                ],
                value='llama-3.1-sonar-large-128k-online',  # Default to large online model
                label="Select Perplexity Model",
                interactive=True
            )
        
        perplexity_interface = gr.load(
            name=perplexity_model.value,
            src=perplexity_gradio.registry,
            accept_token=True,
            fill_height=True
        )
        
        def update_perplexity_model(new_model):
            return gr.load(
                name=new_model,
                src=perplexity_gradio.registry,
                accept_token=True,
                fill_height=True
            )
        
        perplexity_model.change(
            fn=update_perplexity_model,
            inputs=[perplexity_model],
            outputs=[perplexity_interface]
        )
        
        gr.Markdown("""
        **Note:** Models are grouped into three categories:
        - **Sonar Online Models**: Include search capabilities (beta access required)
        - **Sonar Chat Models**: Standard chat models
        - **Open Source Models**: Based on Hugging Face implementations
        
        For access to Online LLMs features, please fill out the [beta access form](https://perplexity.typeform.com/apiaccessform?typeform-source=docs.perplexity.ai).
        """)
    with gr.Tab("DeepSeek-V2.5"):
        gr.load(
            name='deepseek-ai/DeepSeek-V2.5',
            src=hyperbolic_gradio.registry,
            accept_token=True,
            fill_height=True
        )
        gr.Markdown("**Note:** You need to use a Hyperbolic API key from [Hyperbolic](https://app.hyperbolic.xyz/).")

demo.launch(ssr_mode=False)