Spaces:
Runtime error
Runtime error
# Parallel WaveGAN implementation with Pytorch | |
![](https://github.com/kan-bayashi/ParallelWaveGAN/workflows/CI/badge.svg) [![](https://img.shields.io/pypi/v/parallel-wavegan)](https://pypi.org/project/parallel-wavegan/) ![](https://img.shields.io/pypi/pyversions/parallel-wavegan) ![](https://img.shields.io/pypi/l/parallel-wavegan) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/espnet/notebook/blob/master/espnet2_tts_realtime_demo.ipynb) | |
This repository provides **UNOFFICIAL** pytorch implementations of the following models: | |
- [Parallel WaveGAN](https://arxiv.org/abs/1910.11480) | |
- [MelGAN](https://arxiv.org/abs/1910.06711) | |
- [Multiband-MelGAN](https://arxiv.org/abs/2005.05106) | |
- [HiFi-GAN](https://arxiv.org/abs/2010.05646) | |
- [StyleMelGAN](https://arxiv.org/abs/2011.01557) | |
You can combine these state-of-the-art non-autoregressive models to build your own great vocoder! | |
Please check our samples in [our demo HP](https://kan-bayashi.github.io/ParallelWaveGAN). | |
![](https://user-images.githubusercontent.com/22779813/68081503-4b8fcf00-fe52-11e9-8791-e02851220355.png) | |
> Source of the figure: https://arxiv.org/pdf/1910.11480.pdf | |
The goal of this repository is to provide real-time neural vocoder, which is compatible with [ESPnet-TTS](https://github.com/espnet/espnet). | |
Also, this repository can be combined with [NVIDIA/tacotron2](https://github.com/NVIDIA/tacotron2)-based implementation (See [this comment](https://github.com/kan-bayashi/ParallelWaveGAN/issues/169#issuecomment-649320778)). | |
You can try the real-time end-to-end text-to-speech demonstration in Google Colab! | |
- Real-time demonstration with ESPnet2 [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/espnet/notebook/blob/master/espnet2_tts_realtime_demo.ipynb) | |
- Real-time demonstration with ESPnet1 [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/espnet/notebook/blob/master/tts_realtime_demo.ipynb) | |
## What's new | |
- 2021/08/24 Add more pretrained models of StyleMelGAN and HiFi-GAN. | |
- 2021/08/07 Add initial pretrained models of StyleMelGAN and HiFi-GAN. | |
- 2021/08/03 Support [StyleMelGAN](https://arxiv.org/abs/2011.01557) generator and discriminator! | |
- 2021/08/02 Support [HiFi-GAN](https://arxiv.org/abs/2010.05646) generator and discriminator! | |
- 2020/10/07 [JSSS](https://sites.google.com/site/shinnosuketakamichi/research-topics/jsss_corpus) recipe is available! | |
- 2020/08/19 [Real-time demo with ESPnet2](https://colab.research.google.com/github/espnet/notebook/blob/master/espnet2_tts_realtime_demo.ipynb) is available! | |
- 2020/05/29 [VCTK, JSUT, and CSMSC multi-band MelGAN pretrained model](#Results) is available! | |
- 2020/05/27 [New LJSpeech multi-band MelGAN pretrained model](#Results) is available! | |
- 2020/05/24 [LJSpeech full-band MelGAN pretrained model](#Results) is available! | |
- 2020/05/22 [LJSpeech multi-band MelGAN pretrained model](#Results) is available! | |
- 2020/05/16 [Multi-band MelGAN](https://arxiv.org/abs/2005.05106) is available! | |
- 2020/03/25 [LibriTTS pretrained models](#Results) are available! | |
- 2020/03/17 [Tensorflow conversion example notebook](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/notebooks/convert_melgan_from_pytorch_to_tensorflow.ipynb) is available (Thanks, [@dathudeptrai](https://github.com/dathudeptrai))! | |
- 2020/03/16 [LibriTTS recipe](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/libritts/voc1) is available! | |
- 2020/03/12 [PWG G + MelGAN D + STFT-loss samples](#Results) are available! | |
- 2020/03/12 Multi-speaker English recipe [egs/vctk/voc1](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/vctk/voc1) is available! | |
- 2020/02/22 [MelGAN G + MelGAN D + STFT-loss samples](#Results) are available! | |
- 2020/02/12 Support [MelGAN](https://arxiv.org/abs/1910.06711)'s discriminator! | |
- 2020/02/08 Support [MelGAN](https://arxiv.org/abs/1910.06711)'s generator! | |
## Requirements | |
This repository is tested on Ubuntu 20.04 with a GPU Titan V. | |
- Python 3.6+ | |
- Cuda 10.0+ | |
- CuDNN 7+ | |
- NCCL 2+ (for distributed multi-gpu training) | |
- libsndfile (you can install via `sudo apt install libsndfile-dev` in ubuntu) | |
- jq (you can install via `sudo apt install jq` in ubuntu) | |
- sox (you can install via `sudo apt install sox` in ubuntu) | |
Different cuda version should be working but not explicitly tested. | |
All of the codes are tested on Pytorch 1.4, 1.5.1, 1.7.1, 1.8.1, and 1.9. | |
Pytorch 1.6 works but there are some issues in cpu mode (See #198). | |
## Setup | |
You can select the installation method from two alternatives. | |
### A. Use pip | |
```bash | |
$ git clone https://github.com/kan-bayashi/ParallelWaveGAN.git | |
$ cd ParallelWaveGAN | |
$ pip install -e . | |
# If you want to use distributed training, please install | |
# apex manually by following https://github.com/NVIDIA/apex | |
$ ... | |
``` | |
Note that your cuda version must be exactly matched with the version used for the pytorch binary to install apex. | |
To install pytorch compiled with different cuda version, see `tools/Makefile`. | |
### B. Make virtualenv | |
```bash | |
$ git clone https://github.com/kan-bayashi/ParallelWaveGAN.git | |
$ cd ParallelWaveGAN/tools | |
$ make | |
# If you want to use distributed training, please run following | |
# command to install apex. | |
$ make apex | |
``` | |
Note that we specify cuda version used to compile pytorch wheel. | |
If you want to use different cuda version, please check `tools/Makefile` to change the pytorch wheel to be installed. | |
## Recipe | |
This repository provides [Kaldi](https://github.com/kaldi-asr/kaldi)-style recipes, as the same as [ESPnet](https://github.com/espnet/espnet). | |
Currently, the following recipes are supported. | |
- [LJSpeech](https://keithito.com/LJ-Speech-Dataset/): English female speaker | |
- [JSUT](https://sites.google.com/site/shinnosuketakamichi/publication/jsut): Japanese female speaker | |
- [JSSS](https://sites.google.com/site/shinnosuketakamichi/research-topics/jsss_corpus): Japanese female speaker | |
- [CSMSC](https://www.data-baker.com/open_source.html): Mandarin female speaker | |
- [CMU Arctic](http://www.festvox.org/cmu_arctic/): English speakers | |
- [JNAS](http://research.nii.ac.jp/src/en/JNAS.html): Japanese multi-speaker | |
- [VCTK](https://homepages.inf.ed.ac.uk/jyamagis/page3/page58/page58.html): English multi-speaker | |
- [LibriTTS](https://arxiv.org/abs/1904.02882): English multi-speaker | |
- [YesNo](https://arxiv.org/abs/1904.02882): English speaker (For debugging) | |
To run the recipe, please follow the below instruction. | |
```bash | |
# Let us move on the recipe directory | |
$ cd egs/ljspeech/voc1 | |
# Run the recipe from scratch | |
$ ./run.sh | |
# You can change config via command line | |
$ ./run.sh --conf <your_customized_yaml_config> | |
# You can select the stage to start and stop | |
$ ./run.sh --stage 2 --stop_stage 2 | |
# If you want to specify the gpu | |
$ CUDA_VISIBLE_DEVICES=1 ./run.sh --stage 2 | |
# If you want to resume training from 10000 steps checkpoint | |
$ ./run.sh --stage 2 --resume <path>/<to>/checkpoint-10000steps.pkl | |
``` | |
See more info about the recipes in [this README](./egs/README.md). | |
## Speed | |
The decoding speed is RTF = 0.016 with TITAN V, much faster than the real-time. | |
```bash | |
[decode]: 100%|ββββββββββ| 250/250 [00:30<00:00, 8.31it/s, RTF=0.0156] | |
2019-11-03 09:07:40,480 (decode:127) INFO: finished generation of 250 utterances (RTF = 0.016). | |
``` | |
Even on the CPU (Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz 16 threads), it can generate less than the real-time. | |
```bash | |
[decode]: 100%|ββββββββββ| 250/250 [22:16<00:00, 5.35s/it, RTF=0.841] | |
2019-11-06 09:04:56,697 (decode:129) INFO: finished generation of 250 utterances (RTF = 0.734). | |
``` | |
If you use MelGAN's generator, the decoding speed will be further faster. | |
```bash | |
# On CPU (Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz 16 threads) | |
[decode]: 100%|ββββββββββ| 250/250 [04:00<00:00, 1.04it/s, RTF=0.0882] | |
2020-02-08 10:45:14,111 (decode:142) INFO: Finished generation of 250 utterances (RTF = 0.137). | |
# On GPU (TITAN V) | |
[decode]: 100%|ββββββββββ| 250/250 [00:06<00:00, 36.38it/s, RTF=0.00189] | |
2020-02-08 05:44:42,231 (decode:142) INFO: Finished generation of 250 utterances (RTF = 0.002). | |
``` | |
If you use Multi-band MelGAN's generator, the decoding speed will be much further faster. | |
```bash | |
# On CPU (Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz 16 threads) | |
[decode]: 100%|ββββββββββ| 250/250 [01:47<00:00, 2.95it/s, RTF=0.048] | |
2020-05-22 15:37:19,771 (decode:151) INFO: Finished generation of 250 utterances (RTF = 0.059). | |
# On GPU (TITAN V) | |
[decode]: 100%|ββββββββββ| 250/250 [00:05<00:00, 43.67it/s, RTF=0.000928] | |
2020-05-22 15:35:13,302 (decode:151) INFO: Finished generation of 250 utterances (RTF = 0.001). | |
``` | |
If you want to accelerate the inference more, it is worthwhile to try the conversion from pytorch to tensorflow. | |
The example of the conversion is available in [the notebook](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/notebooks/convert_melgan_from_pytorch_to_tensorflow.ipynb) (Provided by [@dathudeptrai](https://github.com/dathudeptrai)). | |
## Results | |
Here the results are summarized in the table. | |
You can listen to the samples and download pretrained models from the link to our google drive. | |
| Model | Conf | Lang | Fs [Hz] | Mel range [Hz] | FFT / Hop / Win [pt] | # iters | | |
| :----------------------------------------------------------------------------------------------------------- | :-------------------------------------------------------------------------------------------------------------------------: | :---: | :-----: | :------------: | :------------------: | :-----: | | |
| [ljspeech_parallel_wavegan.v1](https://drive.google.com/open?id=1wdHr1a51TLeo4iKrGErVKHVFyq6D17TU) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/parallel_wavegan.v1.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 400k | | |
| [ljspeech_parallel_wavegan.v1.long](https://drive.google.com/open?id=1XRn3s_wzPF2fdfGshLwuvNHrbgD0hqVS) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/parallel_wavegan.v1.long.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 1M | | |
| [ljspeech_parallel_wavegan.v1.no_limit](https://drive.google.com/open?id=1NoD3TCmKIDHHtf74YsScX8s59aZFOFJA) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/parallel_wavegan.v1.no_limit.yaml) | EN | 22.05k | None | 1024 / 256 / None | 400k | | |
| [ljspeech_parallel_wavegan.v3](https://drive.google.com/open?id=1a5Q2KiJfUQkVFo5Bd1IoYPVicJGnm7EL) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/parallel_wavegan.v3.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 3M | | |
| [ljspeech_melgan.v1](https://drive.google.com/open?id=1z0vO1UMFHyeCdCLAmd7Moewi4QgCb07S) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/melgan.v1.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 400k | | |
| [ljspeech_melgan.v1.long](https://drive.google.com/open?id=1RqNGcFO7Geb6-4pJtMbC9-ph_WiWA14e) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/melgan.v1.long.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 1M | | |
| [ljspeech_melgan_large.v1](https://drive.google.com/open?id=1KQt-gyxbG6iTZ4aVn9YjQuaGYjAleYs8) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/melgan_large.v1.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 400k | | |
| [ljspeech_melgan_large.v1.long](https://drive.google.com/open?id=1ogEx-wiQS7HVtdU0_TmlENURIe4v2erC) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/melgan_large.v1.long.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 1M | | |
| [ljspeech_melgan.v3](https://drive.google.com/open?id=1eXkm_Wf1YVlk5waP4Vgqd0GzMaJtW3y5) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/melgan.v3.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 2M | | |
| [ljspeech_melgan.v3.long](https://drive.google.com/open?id=1u1w4RPefjByX8nfsL59OzU2KgEksBhL1) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/melgan.v3.long.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 4M | | |
| [ljspeech_full_band_melgan.v1](https://drive.google.com/open?id=1RQqkbnoow0srTDYJNYA7RJ5cDRC5xB-t) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/full_band_melgan.v1.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 1M | | |
| [ljspeech_full_band_melgan.v2](https://drive.google.com/open?id=1d9DWOzwOyxT1K5lPnyMqr2nED62vlHaX) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/full_band_melgan.v2.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 1M | | |
| [ljspeech_multi_band_melgan.v1](https://drive.google.com/open?id=1ls_YxCccQD-v6ADbG6qXlZ8f30KrrhLT) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/multi_band_melgan.v1.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 1M | | |
| [ljspeech_multi_band_melgan.v2](https://drive.google.com/open?id=1wevYP2HQ7ec2fSixTpZIX0sNBtYZJz_I) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/multi_band_melgan.v2.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 1M | | |
| [ljspeech_hifigan.v1](https://drive.google.com/open?id=18_R5-pGHDIbIR1QvrtBZwVRHHpBy5xiZ) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/hifigan.v1.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 2.5M | | |
| [ljspeech_style_melgan.v1](https://drive.google.com/open?id=1WFlVknhyeZhTT5R6HznVJCJ4fwXKtb3B) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/style_melgan.v1.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 1.5M | | |
| [jsut_parallel_wavegan.v1](https://drive.google.com/open?id=1UDRL0JAovZ8XZhoH0wi9jj_zeCKb-AIA) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/jsut/voc1/conf/parallel_wavegan.v1.yaml) | JP | 24k | 80-7600 | 2048 / 300 / 1200 | 400k | | |
| [jsut_multi_band_melgan.v2](https://drive.google.com/open?id=1E4fe0c5gMLtmSS0Hrzj-9nUbMwzke4PS) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/jsut/voc1/conf/multi_band_melgan.v2.yaml) | JP | 24k | 80-7600 | 2048 / 300 / 1200 | 1M | | |
| [just_hifigan.v1](https://drive.google.com/open?id=1TY88141UWzQTAQXIPa8_g40QshuqVj6Y) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/jsut/voc1/conf/hifigan.v1.yaml) | JP | 24k | 80-7600 | 2048 / 300 / 1200 | 2.5M | | |
| [just_style_melgan.v1](https://drive.google.com/open?id=1-qKAC0zLya6iKMngDERbSzBYD4JHmGdh) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/jsut/voc1/conf/style_melgan.v1.yaml) | JP | 24k | 80-7600 | 2048 / 300 / 1200 | 1.5M | | |
| [csmsc_parallel_wavegan.v1](https://drive.google.com/open?id=1C2nu9nOFdKcEd-D9xGquQ0bCia0B2v_4) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/csmsc/voc1/conf/parallel_wavegan.v1.yaml) | ZH | 24k | 80-7600 | 2048 / 300 / 1200 | 400k | | |
| [csmsc_multi_band_melgan.v2](https://drive.google.com/open?id=1F7FwxGbvSo1Rnb5kp0dhGwimRJstzCrz) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/csmsc/voc1/conf/multi_band_melgan.v2.yaml) | ZH | 24k | 80-7600 | 2048 / 300 / 1200 | 1M | | |
| [csmsc_hifigan.v1](https://drive.google.com/open?id=1gTkVloMqteBfSRhTrZGdOBBBRsGd3qt8) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/csmsc/voc1/conf/hifigan.v1.yaml) | ZH | 24k | 80-7600 | 2048 / 300 / 1200 | 2.5M | | |
| [csmsc_style_melgan.v1](https://drive.google.com/open?id=1gl4P5W_ST_nnv0vjurs7naVm5UJqkZIn) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/csmsc/voc1/conf/style_melgan.v1.yaml) | ZH | 24k | 80-7600 | 2048 / 300 / 1200 | 1.5M | | |
| [arctic_slt_parallel_wavegan.v1](https://drive.google.com/open?id=1xG9CmSED2TzFdklD6fVxzf7kFV2kPQAJ) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/arctic/voc1/conf/parallel_wavegan.v1.yaml) | EN | 16k | 80-7600 | 1024 / 256 / None | 400k | | |
| [jnas_parallel_wavegan.v1](https://drive.google.com/open?id=1n_hkxPxryVXbp6oHM1NFm08q0TcoDXz1) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/jnas/voc1/conf/parallel_wavegan.v1.yaml) | JP | 16k | 80-7600 | 1024 / 256 / None | 400k | | |
| [vctk_parallel_wavegan.v1](https://drive.google.com/open?id=1dGTu-B7an2P5sEOepLPjpOaasgaSnLpi) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/vctk/voc1/conf/parallel_wavegan.v1.yaml) | EN | 24k | 80-7600 | 2048 / 300 / 1200 | 400k | | |
| [vctk_parallel_wavegan.v1.long](https://drive.google.com/open?id=1qoocM-VQZpjbv5B-zVJpdraazGcPL0So) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/vctk/voc1/conf/parallel_wavegan.v1.long.yaml) | EN | 24k | 80-7600 | 2048 / 300 / 1200 | 1M | | |
| [vctk_multi_band_melgan.v2](https://drive.google.com/open?id=17EkB4hSKUEDTYEne-dNHtJT724hdivn4) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/vctk/voc1/conf/multi_band_melgan.v2.yaml) | EN | 24k | 80-7600 | 2048 / 300 / 1200 | 1M | | |
| [vctk_hifigan.v1](https://drive.google.com/open?id=17fu7ukS97m-8StXPc6ltW8a3hr0fsQBP) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/vctk/voc1/conf/hifigan.v1.yaml) | EN | 24k | 80-7600 | 2048 / 300 / 1200 | 2.5M | | |
| [vctk_style_melgan.v1](https://drive.google.com/open?id=1kfJgzDgrOFYxTfVTNbTHcnyq--cc6plo) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/vctk/voc1/conf/style_melgan.v1.yaml) | EN | 24k | 80-7600 | 2048 / 300 / 1200 | 1.5M | | |
| [libritts_parallel_wavegan.v1](https://drive.google.com/open?id=1pb18Nd2FCYWnXfStszBAEEIMe_EZUJV0) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/libritts/voc1/conf/parallel_wavegan.v1.yaml) | EN | 24k | 80-7600 | 2048 / 300 / 1200 | 400k | | |
| [libritts_parallel_wavegan.v1.long](https://drive.google.com/open?id=15ibzv-uTeprVpwT946Hl1XUYDmg5Afwz) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/libritts/voc1/conf/parallel_wavegan.v1.long.yaml) | EN | 24k | 80-7600 | 2048 / 300 / 1200 | 1M | | |
| [libritts_multi_band_melgan.v2](https://drive.google.com/open?id=1jfB15igea6tOQ0hZJGIvnpf3QyNhTLnq) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/libritts/voc1/conf/multi_band_melgan.v2.yaml) | EN | 24k | 80-7600 | 2048 / 300 / 1200 | 1M | | |
| [libritts_hifigan.v1](https://drive.google.com/open?id=10jBLsjQT3LvR-3GgPZpRvWIWvpGjzDnM) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/libritts/voc1/conf/hifigan.v1.yaml) | EN | 24k | 80-7600 | 2048 / 300 / 1200 | 2.5M | | |
| [libritts_style_melgan.v1](https://drive.google.com/open?id=1OPpYbrqYOJ_hHNGSQHzUxz_QZWWBwV9r) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/libritts/voc1/conf/style_melgan.v1.yaml) | EN | 24k | 80-7600 | 2048 / 300 / 1200 | 1.5M | | |
| [kss_parallel_wavegan.v1](https://drive.google.com/open?id=1n5kitXZqPHUr-veoUKCyfJvb3p1g0VlY) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/libritts/voc1/conf/parallel_wavegan.v1.yaml) | KO | 24k | 80-7600 | 2048 / 300 / 1200 | 400k | | |
| [hui_acg_hokuspokus_parallel_wavegan.v1](https://drive.google.com/open?id=1rwzpIwb65xbW5fFPsqPWdforsk4U-vDg) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/libritts/voc1/conf/parallel_wavegan.v1.yaml) | DE | 24k | 80-7600 | 2048 / 300 / 1200 | 400k | | |
| [ruslan_parallel_wavegan.v1](https://drive.google.com/open?id=1QGuesaRKGful0bUTTaFZdbjqHNhy2LpE) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/libritts/voc1/conf/parallel_wavegan.v1.yaml) | RU | 24k | 80-7600 | 2048 / 300 / 1200 | 400k | | |
Please access at [our google drive](https://drive.google.com/open?id=1sd_QzcUNnbiaWq7L0ykMP7Xmk-zOuxTi) to check more results. | |
## How-to-use pretrained models | |
### Analysis-synthesis | |
Here the minimal code is shown to perform analysis-synthesis using the pretrained model. | |
```bash | |
# Please make sure you installed `parallel_wavegan` | |
# If not, please install via pip | |
$ pip install parallel_wavegan | |
# You can download the pretrained model from terminal | |
$ python << EOF | |
from parallel_wavegan.utils import download_pretrained_model | |
download_pretrained_model("<pretrained_model_tag>", "pretrained_model") | |
EOF | |
# You can get all of available pretrained models as follows: | |
$ python << EOF | |
from parallel_wavegan.utils import PRETRAINED_MODEL_LIST | |
print(PRETRAINED_MODEL_LIST.keys()) | |
EOF | |
# Now you can find downloaded pretrained model in `pretrained_model/<pretrain_model_tag>/` | |
$ ls pretrain_model/<pretrain_model_tag> | |
ο checkpoint-400000steps.pkl ο config.yml ο stats.h5 | |
# These files can also be downloaded manually from the above results | |
# Please put an audio file in `sample` directory to perform analysis-synthesis | |
$ ls sample/ | |
ο sample.wav | |
# Then perform feature extraction -> feature normalization -> synthesis | |
$ parallel-wavegan-preprocess \ | |
--config pretrain_model/<pretrain_model_tag>/config.yml \ | |
--rootdir sample \ | |
--dumpdir dump/sample/raw | |
100%|ββββββββββββββββββββββββββββββββββββββββ| 1/1 [00:00<00:00, 914.19it/s] | |
$ parallel-wavegan-normalize \ | |
--config pretrain_model/<pretrain_model_tag>/config.yml \ | |
--rootdir dump/sample/raw \ | |
--dumpdir dump/sample/norm \ | |
--stats pretrain_model/<pretrain_model_tag>/stats.h5 | |
2019-11-13 13:44:29,574 (normalize:87) INFO: the number of files = 1. | |
100%|ββββββββββββββββββββββββββββββββββββββββ| 1/1 [00:00<00:00, 513.13it/s] | |
$ parallel-wavegan-decode \ | |
--checkpoint pretrain_model/<pretrain_model_tag>/checkpoint-400000steps.pkl \ | |
--dumpdir dump/sample/norm \ | |
--outdir sample | |
2019-11-13 13:44:31,229 (decode:91) INFO: the number of features to be decoded = 1. | |
[decode]: 100%|βββββββββββββββββββ| 1/1 [00:00<00:00, 18.33it/s, RTF=0.0146] | |
2019-11-13 13:44:37,132 (decode:129) INFO: finished generation of 1 utterances (RTF = 0.015). | |
# You can skip normalization step (on-the-fly normalization, feature extraction -> synthesis) | |
$ parallel-wavegan-preprocess \ | |
--config pretrain_model/<pretrain_model_tag>/config.yml \ | |
--rootdir sample \ | |
--dumpdir dump/sample/raw | |
100%|ββββββββββββββββββββββββββββββββββββββββ| 1/1 [00:00<00:00, 914.19it/s] | |
$ parallel-wavegan-decode \ | |
--checkpoint pretrain_model/<pretrain_model_tag>/checkpoint-400000steps.pkl \ | |
--dumpdir dump/sample/raw \ | |
--normalize-before \ | |
--outdir sample | |
2019-11-13 13:44:31,229 (decode:91) INFO: the number of features to be decoded = 1. | |
[decode]: 100%|βββββββββββββββββββ| 1/1 [00:00<00:00, 18.33it/s, RTF=0.0146] | |
2019-11-13 13:44:37,132 (decode:129) INFO: finished generation of 1 utterances (RTF = 0.015). | |
# you can find the generated speech in `sample` directory | |
$ ls sample | |
ο sample.wav ο sample_gen.wav | |
``` | |
### Decoding with ESPnet-TTS model's features | |
Here, I show the procedure to generate waveforms with features generated by [ESPnet-TTS](https://github.com/espnet/espnet) models. | |
```bash | |
# Make sure you already finished running the recipe of ESPnet-TTS. | |
# You must use the same feature settings for both Text2Mel and Mel2Wav models. | |
# Let us move on "ESPnet" recipe directory | |
$ cd /path/to/espnet/egs/<recipe_name>/tts1 | |
$ pwd | |
/path/to/espnet/egs/<recipe_name>/tts1 | |
# If you use ESPnet2, move on `egs2/` | |
$ cd /path/to/espnet/egs2/<recipe_name>/tts1 | |
$ pwd | |
/path/to/espnet/egs2/<recipe_name>/tts1 | |
# Please install this repository in ESPnet conda (or virtualenv) environment | |
$ . ./path.sh && pip install -U parallel_wavegan | |
# You can download the pretrained model from terminal | |
$ python << EOF | |
from parallel_wavegan.utils import download_pretrained_model | |
download_pretrained_model("<pretrained_model_tag>", "pretrained_model") | |
EOF | |
# You can get all of available pretrained models as follows: | |
$ python << EOF | |
from parallel_wavegan.utils import PRETRAINED_MODEL_LIST | |
print(PRETRAINED_MODEL_LIST.keys()) | |
EOF | |
# You can find downloaded pretrained model in `pretrained_model/<pretrain_model_tag>/` | |
$ ls pretrain_model/<pretrain_model_tag> | |
ο checkpoint-400000steps.pkl ο config.yml ο stats.h5 | |
# These files can also be downloaded manually from the above results | |
``` | |
**Case 1**: If you use the same dataset for both Text2Mel and Mel2Wav | |
```bash | |
# In this case, you can directly use generated features for decoding. | |
# Please specify `feats.scp` path for `--feats-scp`, which is located in | |
# exp/<your_model_dir>/outputs_*_decode/<set_name>/feats.scp. | |
# Note that do not use outputs_*decode_denorm/<set_name>/feats.scp since | |
# it is de-normalized features (the input for PWG is normalized features). | |
$ parallel-wavegan-decode \ | |
--checkpoint pretrain_model/<pretrain_model_tag>/checkpoint-400000steps.pkl \ | |
--feats-scp exp/<your_model_dir>/outputs_*_decode/<set_name>/feats.scp \ | |
--outdir <path_to_outdir> | |
# In the case of ESPnet2, the generated feature can be found in | |
# exp/<your_model_dir>/decode_*/<set_name>/norm/feats.scp. | |
$ parallel-wavegan-decode \ | |
--checkpoint pretrain_model/<pretrain_model_tag>/checkpoint-400000steps.pkl \ | |
--feats-scp exp/<your_model_dir>/decode_*/<set_name>/norm/feats.scp \ | |
--outdir <path_to_outdir> | |
# You can find the generated waveforms in <path_to_outdir>/. | |
$ ls <path_to_outdir> | |
ο utt_id_1_gen.wav ο utt_id_2_gen.wav ... ο utt_id_N_gen.wav | |
``` | |
**Case 2**: If you use different datasets for Text2Mel and Mel2Wav models | |
```bash | |
# In this case, you must provide `--normalize-before` option additionally. | |
# And use `feats.scp` of de-normalized generated features. | |
# ESPnet1 case | |
$ parallel-wavegan-decode \ | |
--checkpoint pretrain_model/<pretrain_model_tag>/checkpoint-400000steps.pkl \ | |
--feats-scp exp/<your_model_dir>/outputs_*_decode_denorm/<set_name>/feats.scp \ | |
--outdir <path_to_outdir> \ | |
--normalize-before | |
# ESPnet2 case | |
$ parallel-wavegan-decode \ | |
--checkpoint pretrain_model/<pretrain_model_tag>/checkpoint-400000steps.pkl \ | |
--feats-scp exp/<your_model_dir>/decode_*/<set_name>/denorm/feats.scp \ | |
--outdir <path_to_outdir> \ | |
--normalize-before | |
# You can find the generated waveforms in <path_to_outdir>/. | |
$ ls <path_to_outdir> | |
ο utt_id_1_gen.wav ο utt_id_2_gen.wav ... ο utt_id_N_gen.wav | |
``` | |
If you want to combine these models in python, you can try the real-time demonstration in Google Colab! | |
- Real-time demonstration with ESPnet2 [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/espnet/notebook/blob/master/espnet2_tts_realtime_demo.ipynb) | |
- Real-time demonstration with ESPnet1 [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/espnet/notebook/blob/master/tts_realtime_demo.ipynb) | |
### Decoding with dumped npy files | |
Sometimes we want to decode with dumped npy files, which are mel-spectrogram generated by TTS models. | |
Please make sure you used the same feature extraction settings of the pretrained vocoder (`fs`, `fft_size`, `hop_size`, `win_length`, `fmin`, and `fmax`). | |
Only the difference of `log_base` can be changed with some post-processings (we use log 10 instead of natural log as a default). | |
See detail in [the comment](https://github.com/kan-bayashi/ParallelWaveGAN/issues/169#issuecomment-649320778). | |
```bash | |
# Generate dummy npy file of mel-spectrogram | |
$ ipython | |
[ins] In [1]: import numpy as np | |
[ins] In [2]: x = np.random.randn(512, 80) # (#frames, #mels) | |
[ins] In [3]: np.save("dummy_1.npy", x) | |
[ins] In [4]: y = np.random.randn(256, 80) # (#frames, #mels) | |
[ins] In [5]: np.save("dummy_2.npy", y) | |
[ins] In [6]: exit | |
# Make scp file (key-path format) | |
$ find -name "*.npy" | awk '{print "dummy_" NR " " $1}' > feats.scp | |
# Check (<utt_id> <path>) | |
$ cat feats.scp | |
dummy_1 ./dummy_1.npy | |
dummy_2 ./dummy_2.npy | |
# Decode without feature normalization | |
# This case assumes that the input mel-spectrogram is normalized with the same statistics of the pretrained model. | |
$ parallel-wavegan-decode \ | |
--checkpoint /path/to/checkpoint-400000steps.pkl \ | |
--feats-scp ./feats.scp \ | |
--outdir wav | |
2021-08-10 09:13:07,624 (decode:140) INFO: The number of features to be decoded = 2. | |
[decode]: 100%|ββββββββββββββββββββββββββββββββββββββββ| 2/2 [00:00<00:00, 13.84it/s, RTF=0.00264] | |
2021-08-10 09:13:29,660 (decode:174) INFO: Finished generation of 2 utterances (RTF = 0.005). | |
# Decode with feature normalization | |
# This case assumes that the input mel-spectrogram is not normalized. | |
$ parallel-wavegan-decode \ | |
--checkpoint /path/to/checkpoint-400000steps.pkl \ | |
--feats-scp ./feats.scp \ | |
--normalize-before \ | |
--outdir wav | |
2021-08-10 09:13:07,624 (decode:140) INFO: The number of features to be decoded = 2. | |
[decode]: 100%|ββββββββββββββββββββββββββββββββββββββββ| 2/2 [00:00<00:00, 13.84it/s, RTF=0.00264] | |
2021-08-10 09:13:29,660 (decode:174) INFO: Finished generation of 2 utterances (RTF = 0.005). | |
``` | |
## References | |
- [Parallel WaveGAN](https://arxiv.org/abs/1910.11480) | |
- [r9y9/wavenet_vocoder](https://github.com/r9y9/wavenet_vocoder) | |
- [LiyuanLucasLiu/RAdam](https://github.com/LiyuanLucasLiu/RAdam) | |
- [MelGAN](https://arxiv.org/abs/1910.06711) | |
- [descriptinc/melgan-neurips](https://github.com/descriptinc/melgan-neurips) | |
- [Multi-band MelGAN](https://arxiv.org/abs/2005.05106) | |
- [HiFi-GAN](https://arxiv.org/abs/2010.05646) | |
- [jik876/hifi-gan](https://github.com/jik876/hifi-gan) | |
- [StyleMelGAN](https://arxiv.org/abs/2011.01557) | |
## Acknowledgement | |
The author would like to thank Ryuichi Yamamoto ([@r9y9](https://github.com/r9y9)) for his great repository, paper, and valuable discussions. | |
## Author | |
Tomoki Hayashi ([@kan-bayashi](https://github.com/kan-bayashi)) | |
E-mail: `hayashi.tomoki<at>g.sp.m.is.nagoya-u.ac.jp` | |