Spaces:
Runtime error
Runtime error
Ahsen Khaliq
commited on
Commit
β’
47c361d
1
Parent(s):
5a02527
Upload ParallelWaveGAN/README.md
Browse files- ParallelWaveGAN/README.md +461 -0
ParallelWaveGAN/README.md
ADDED
@@ -0,0 +1,461 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Parallel WaveGAN implementation with Pytorch
|
2 |
+
|
3 |
+
![](https://github.com/kan-bayashi/ParallelWaveGAN/workflows/CI/badge.svg) [![](https://img.shields.io/pypi/v/parallel-wavegan)](https://pypi.org/project/parallel-wavegan/) ![](https://img.shields.io/pypi/pyversions/parallel-wavegan) ![](https://img.shields.io/pypi/l/parallel-wavegan) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/espnet/notebook/blob/master/espnet2_tts_realtime_demo.ipynb)
|
4 |
+
|
5 |
+
This repository provides **UNOFFICIAL** pytorch implementations of the following models:
|
6 |
+
- [Parallel WaveGAN](https://arxiv.org/abs/1910.11480)
|
7 |
+
- [MelGAN](https://arxiv.org/abs/1910.06711)
|
8 |
+
- [Multiband-MelGAN](https://arxiv.org/abs/2005.05106)
|
9 |
+
- [HiFi-GAN](https://arxiv.org/abs/2010.05646)
|
10 |
+
- [StyleMelGAN](https://arxiv.org/abs/2011.01557)
|
11 |
+
|
12 |
+
You can combine these state-of-the-art non-autoregressive models to build your own great vocoder!
|
13 |
+
|
14 |
+
Please check our samples in [our demo HP](https://kan-bayashi.github.io/ParallelWaveGAN).
|
15 |
+
|
16 |
+
![](https://user-images.githubusercontent.com/22779813/68081503-4b8fcf00-fe52-11e9-8791-e02851220355.png)
|
17 |
+
|
18 |
+
> Source of the figure: https://arxiv.org/pdf/1910.11480.pdf
|
19 |
+
|
20 |
+
The goal of this repository is to provide real-time neural vocoder, which is compatible with [ESPnet-TTS](https://github.com/espnet/espnet).
|
21 |
+
Also, this repository can be combined with [NVIDIA/tacotron2](https://github.com/NVIDIA/tacotron2)-based implementation (See [this comment](https://github.com/kan-bayashi/ParallelWaveGAN/issues/169#issuecomment-649320778)).
|
22 |
+
|
23 |
+
You can try the real-time end-to-end text-to-speech demonstration in Google Colab!
|
24 |
+
- Real-time demonstration with ESPnet2 [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/espnet/notebook/blob/master/espnet2_tts_realtime_demo.ipynb)
|
25 |
+
- Real-time demonstration with ESPnet1 [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/espnet/notebook/blob/master/tts_realtime_demo.ipynb)
|
26 |
+
|
27 |
+
## What's new
|
28 |
+
|
29 |
+
- 2021/08/24 Add more pretrained models of StyleMelGAN and HiFi-GAN.
|
30 |
+
- 2021/08/07 Add initial pretrained models of StyleMelGAN and HiFi-GAN.
|
31 |
+
- 2021/08/03 Support [StyleMelGAN](https://arxiv.org/abs/2011.01557) generator and discriminator!
|
32 |
+
- 2021/08/02 Support [HiFi-GAN](https://arxiv.org/abs/2010.05646) generator and discriminator!
|
33 |
+
- 2020/10/07 [JSSS](https://sites.google.com/site/shinnosuketakamichi/research-topics/jsss_corpus) recipe is available!
|
34 |
+
- 2020/08/19 [Real-time demo with ESPnet2](https://colab.research.google.com/github/espnet/notebook/blob/master/espnet2_tts_realtime_demo.ipynb) is available!
|
35 |
+
- 2020/05/29 [VCTK, JSUT, and CSMSC multi-band MelGAN pretrained model](#Results) is available!
|
36 |
+
- 2020/05/27 [New LJSpeech multi-band MelGAN pretrained model](#Results) is available!
|
37 |
+
- 2020/05/24 [LJSpeech full-band MelGAN pretrained model](#Results) is available!
|
38 |
+
- 2020/05/22 [LJSpeech multi-band MelGAN pretrained model](#Results) is available!
|
39 |
+
- 2020/05/16 [Multi-band MelGAN](https://arxiv.org/abs/2005.05106) is available!
|
40 |
+
- 2020/03/25 [LibriTTS pretrained models](#Results) are available!
|
41 |
+
- 2020/03/17 [Tensorflow conversion example notebook](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/notebooks/convert_melgan_from_pytorch_to_tensorflow.ipynb) is available (Thanks, [@dathudeptrai](https://github.com/dathudeptrai))!
|
42 |
+
- 2020/03/16 [LibriTTS recipe](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/libritts/voc1) is available!
|
43 |
+
- 2020/03/12 [PWG G + MelGAN D + STFT-loss samples](#Results) are available!
|
44 |
+
- 2020/03/12 Multi-speaker English recipe [egs/vctk/voc1](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/vctk/voc1) is available!
|
45 |
+
- 2020/02/22 [MelGAN G + MelGAN D + STFT-loss samples](#Results) are available!
|
46 |
+
- 2020/02/12 Support [MelGAN](https://arxiv.org/abs/1910.06711)'s discriminator!
|
47 |
+
- 2020/02/08 Support [MelGAN](https://arxiv.org/abs/1910.06711)'s generator!
|
48 |
+
|
49 |
+
## Requirements
|
50 |
+
|
51 |
+
This repository is tested on Ubuntu 20.04 with a GPU Titan V.
|
52 |
+
|
53 |
+
- Python 3.6+
|
54 |
+
- Cuda 10.0+
|
55 |
+
- CuDNN 7+
|
56 |
+
- NCCL 2+ (for distributed multi-gpu training)
|
57 |
+
- libsndfile (you can install via `sudo apt install libsndfile-dev` in ubuntu)
|
58 |
+
- jq (you can install via `sudo apt install jq` in ubuntu)
|
59 |
+
- sox (you can install via `sudo apt install sox` in ubuntu)
|
60 |
+
|
61 |
+
Different cuda version should be working but not explicitly tested.
|
62 |
+
All of the codes are tested on Pytorch 1.4, 1.5.1, 1.7.1, 1.8.1, and 1.9.
|
63 |
+
|
64 |
+
Pytorch 1.6 works but there are some issues in cpu mode (See #198).
|
65 |
+
|
66 |
+
## Setup
|
67 |
+
|
68 |
+
You can select the installation method from two alternatives.
|
69 |
+
|
70 |
+
### A. Use pip
|
71 |
+
|
72 |
+
```bash
|
73 |
+
$ git clone https://github.com/kan-bayashi/ParallelWaveGAN.git
|
74 |
+
$ cd ParallelWaveGAN
|
75 |
+
$ pip install -e .
|
76 |
+
# If you want to use distributed training, please install
|
77 |
+
# apex manually by following https://github.com/NVIDIA/apex
|
78 |
+
$ ...
|
79 |
+
```
|
80 |
+
Note that your cuda version must be exactly matched with the version used for the pytorch binary to install apex.
|
81 |
+
To install pytorch compiled with different cuda version, see `tools/Makefile`.
|
82 |
+
|
83 |
+
### B. Make virtualenv
|
84 |
+
|
85 |
+
```bash
|
86 |
+
$ git clone https://github.com/kan-bayashi/ParallelWaveGAN.git
|
87 |
+
$ cd ParallelWaveGAN/tools
|
88 |
+
$ make
|
89 |
+
# If you want to use distributed training, please run following
|
90 |
+
# command to install apex.
|
91 |
+
$ make apex
|
92 |
+
```
|
93 |
+
|
94 |
+
Note that we specify cuda version used to compile pytorch wheel.
|
95 |
+
If you want to use different cuda version, please check `tools/Makefile` to change the pytorch wheel to be installed.
|
96 |
+
|
97 |
+
## Recipe
|
98 |
+
|
99 |
+
This repository provides [Kaldi](https://github.com/kaldi-asr/kaldi)-style recipes, as the same as [ESPnet](https://github.com/espnet/espnet).
|
100 |
+
Currently, the following recipes are supported.
|
101 |
+
|
102 |
+
- [LJSpeech](https://keithito.com/LJ-Speech-Dataset/): English female speaker
|
103 |
+
- [JSUT](https://sites.google.com/site/shinnosuketakamichi/publication/jsut): Japanese female speaker
|
104 |
+
- [JSSS](https://sites.google.com/site/shinnosuketakamichi/research-topics/jsss_corpus): Japanese female speaker
|
105 |
+
- [CSMSC](https://www.data-baker.com/open_source.html): Mandarin female speaker
|
106 |
+
- [CMU Arctic](http://www.festvox.org/cmu_arctic/): English speakers
|
107 |
+
- [JNAS](http://research.nii.ac.jp/src/en/JNAS.html): Japanese multi-speaker
|
108 |
+
- [VCTK](https://homepages.inf.ed.ac.uk/jyamagis/page3/page58/page58.html): English multi-speaker
|
109 |
+
- [LibriTTS](https://arxiv.org/abs/1904.02882): English multi-speaker
|
110 |
+
- [YesNo](https://arxiv.org/abs/1904.02882): English speaker (For debugging)
|
111 |
+
|
112 |
+
To run the recipe, please follow the below instruction.
|
113 |
+
|
114 |
+
```bash
|
115 |
+
# Let us move on the recipe directory
|
116 |
+
$ cd egs/ljspeech/voc1
|
117 |
+
|
118 |
+
# Run the recipe from scratch
|
119 |
+
$ ./run.sh
|
120 |
+
|
121 |
+
# You can change config via command line
|
122 |
+
$ ./run.sh --conf <your_customized_yaml_config>
|
123 |
+
|
124 |
+
# You can select the stage to start and stop
|
125 |
+
$ ./run.sh --stage 2 --stop_stage 2
|
126 |
+
|
127 |
+
# If you want to specify the gpu
|
128 |
+
$ CUDA_VISIBLE_DEVICES=1 ./run.sh --stage 2
|
129 |
+
|
130 |
+
# If you want to resume training from 10000 steps checkpoint
|
131 |
+
$ ./run.sh --stage 2 --resume <path>/<to>/checkpoint-10000steps.pkl
|
132 |
+
```
|
133 |
+
|
134 |
+
See more info about the recipes in [this README](./egs/README.md).
|
135 |
+
|
136 |
+
## Speed
|
137 |
+
|
138 |
+
The decoding speed is RTF = 0.016 with TITAN V, much faster than the real-time.
|
139 |
+
|
140 |
+
```bash
|
141 |
+
[decode]: 100%|ββββββββββ| 250/250 [00:30<00:00, 8.31it/s, RTF=0.0156]
|
142 |
+
2019-11-03 09:07:40,480 (decode:127) INFO: finished generation of 250 utterances (RTF = 0.016).
|
143 |
+
```
|
144 |
+
|
145 |
+
Even on the CPU (Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz 16 threads), it can generate less than the real-time.
|
146 |
+
|
147 |
+
```bash
|
148 |
+
[decode]: 100%|ββββββββββ| 250/250 [22:16<00:00, 5.35s/it, RTF=0.841]
|
149 |
+
2019-11-06 09:04:56,697 (decode:129) INFO: finished generation of 250 utterances (RTF = 0.734).
|
150 |
+
```
|
151 |
+
|
152 |
+
If you use MelGAN's generator, the decoding speed will be further faster.
|
153 |
+
|
154 |
+
```bash
|
155 |
+
# On CPU (Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz 16 threads)
|
156 |
+
[decode]: 100%|ββββββββββ| 250/250 [04:00<00:00, 1.04it/s, RTF=0.0882]
|
157 |
+
2020-02-08 10:45:14,111 (decode:142) INFO: Finished generation of 250 utterances (RTF = 0.137).
|
158 |
+
|
159 |
+
# On GPU (TITAN V)
|
160 |
+
[decode]: 100%|ββββββββββ| 250/250 [00:06<00:00, 36.38it/s, RTF=0.00189]
|
161 |
+
2020-02-08 05:44:42,231 (decode:142) INFO: Finished generation of 250 utterances (RTF = 0.002).
|
162 |
+
```
|
163 |
+
|
164 |
+
If you use Multi-band MelGAN's generator, the decoding speed will be much further faster.
|
165 |
+
|
166 |
+
```bash
|
167 |
+
# On CPU (Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz 16 threads)
|
168 |
+
[decode]: 100%|ββββββββββ| 250/250 [01:47<00:00, 2.95it/s, RTF=0.048]
|
169 |
+
2020-05-22 15:37:19,771 (decode:151) INFO: Finished generation of 250 utterances (RTF = 0.059).
|
170 |
+
|
171 |
+
# On GPU (TITAN V)
|
172 |
+
[decode]: 100%|ββββββββββ| 250/250 [00:05<00:00, 43.67it/s, RTF=0.000928]
|
173 |
+
2020-05-22 15:35:13,302 (decode:151) INFO: Finished generation of 250 utterances (RTF = 0.001).
|
174 |
+
```
|
175 |
+
|
176 |
+
If you want to accelerate the inference more, it is worthwhile to try the conversion from pytorch to tensorflow.
|
177 |
+
The example of the conversion is available in [the notebook](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/notebooks/convert_melgan_from_pytorch_to_tensorflow.ipynb) (Provided by [@dathudeptrai](https://github.com/dathudeptrai)).
|
178 |
+
|
179 |
+
## Results
|
180 |
+
|
181 |
+
Here the results are summarized in the table.
|
182 |
+
You can listen to the samples and download pretrained models from the link to our google drive.
|
183 |
+
|
184 |
+
| Model | Conf | Lang | Fs [Hz] | Mel range [Hz] | FFT / Hop / Win [pt] | # iters |
|
185 |
+
| :----------------------------------------------------------------------------------------------------------- | :-------------------------------------------------------------------------------------------------------------------------: | :---: | :-----: | :------------: | :------------------: | :-----: |
|
186 |
+
| [ljspeech_parallel_wavegan.v1](https://drive.google.com/open?id=1wdHr1a51TLeo4iKrGErVKHVFyq6D17TU) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/parallel_wavegan.v1.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 400k |
|
187 |
+
| [ljspeech_parallel_wavegan.v1.long](https://drive.google.com/open?id=1XRn3s_wzPF2fdfGshLwuvNHrbgD0hqVS) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/parallel_wavegan.v1.long.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 1M |
|
188 |
+
| [ljspeech_parallel_wavegan.v1.no_limit](https://drive.google.com/open?id=1NoD3TCmKIDHHtf74YsScX8s59aZFOFJA) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/parallel_wavegan.v1.no_limit.yaml) | EN | 22.05k | None | 1024 / 256 / None | 400k |
|
189 |
+
| [ljspeech_parallel_wavegan.v3](https://drive.google.com/open?id=1a5Q2KiJfUQkVFo5Bd1IoYPVicJGnm7EL) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/parallel_wavegan.v3.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 3M |
|
190 |
+
| [ljspeech_melgan.v1](https://drive.google.com/open?id=1z0vO1UMFHyeCdCLAmd7Moewi4QgCb07S) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/melgan.v1.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 400k |
|
191 |
+
| [ljspeech_melgan.v1.long](https://drive.google.com/open?id=1RqNGcFO7Geb6-4pJtMbC9-ph_WiWA14e) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/melgan.v1.long.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 1M |
|
192 |
+
| [ljspeech_melgan_large.v1](https://drive.google.com/open?id=1KQt-gyxbG6iTZ4aVn9YjQuaGYjAleYs8) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/melgan_large.v1.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 400k |
|
193 |
+
| [ljspeech_melgan_large.v1.long](https://drive.google.com/open?id=1ogEx-wiQS7HVtdU0_TmlENURIe4v2erC) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/melgan_large.v1.long.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 1M |
|
194 |
+
| [ljspeech_melgan.v3](https://drive.google.com/open?id=1eXkm_Wf1YVlk5waP4Vgqd0GzMaJtW3y5) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/melgan.v3.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 2M |
|
195 |
+
| [ljspeech_melgan.v3.long](https://drive.google.com/open?id=1u1w4RPefjByX8nfsL59OzU2KgEksBhL1) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/melgan.v3.long.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 4M |
|
196 |
+
| [ljspeech_full_band_melgan.v1](https://drive.google.com/open?id=1RQqkbnoow0srTDYJNYA7RJ5cDRC5xB-t) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/full_band_melgan.v1.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 1M |
|
197 |
+
| [ljspeech_full_band_melgan.v2](https://drive.google.com/open?id=1d9DWOzwOyxT1K5lPnyMqr2nED62vlHaX) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/full_band_melgan.v2.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 1M |
|
198 |
+
| [ljspeech_multi_band_melgan.v1](https://drive.google.com/open?id=1ls_YxCccQD-v6ADbG6qXlZ8f30KrrhLT) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/multi_band_melgan.v1.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 1M |
|
199 |
+
| [ljspeech_multi_band_melgan.v2](https://drive.google.com/open?id=1wevYP2HQ7ec2fSixTpZIX0sNBtYZJz_I) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/multi_band_melgan.v2.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 1M |
|
200 |
+
| [ljspeech_hifigan.v1](https://drive.google.com/open?id=18_R5-pGHDIbIR1QvrtBZwVRHHpBy5xiZ) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/hifigan.v1.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 2.5M |
|
201 |
+
| [ljspeech_style_melgan.v1](https://drive.google.com/open?id=1WFlVknhyeZhTT5R6HznVJCJ4fwXKtb3B) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/style_melgan.v1.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 1.5M |
|
202 |
+
| [jsut_parallel_wavegan.v1](https://drive.google.com/open?id=1UDRL0JAovZ8XZhoH0wi9jj_zeCKb-AIA) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/jsut/voc1/conf/parallel_wavegan.v1.yaml) | JP | 24k | 80-7600 | 2048 / 300 / 1200 | 400k |
|
203 |
+
| [jsut_multi_band_melgan.v2](https://drive.google.com/open?id=1E4fe0c5gMLtmSS0Hrzj-9nUbMwzke4PS) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/jsut/voc1/conf/multi_band_melgan.v2.yaml) | JP | 24k | 80-7600 | 2048 / 300 / 1200 | 1M |
|
204 |
+
| [just_hifigan.v1](https://drive.google.com/open?id=1TY88141UWzQTAQXIPa8_g40QshuqVj6Y) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/jsut/voc1/conf/hifigan.v1.yaml) | JP | 24k | 80-7600 | 2048 / 300 / 1200 | 2.5M |
|
205 |
+
| [just_style_melgan.v1](https://drive.google.com/open?id=1-qKAC0zLya6iKMngDERbSzBYD4JHmGdh) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/jsut/voc1/conf/style_melgan.v1.yaml) | JP | 24k | 80-7600 | 2048 / 300 / 1200 | 1.5M |
|
206 |
+
| [csmsc_parallel_wavegan.v1](https://drive.google.com/open?id=1C2nu9nOFdKcEd-D9xGquQ0bCia0B2v_4) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/csmsc/voc1/conf/parallel_wavegan.v1.yaml) | ZH | 24k | 80-7600 | 2048 / 300 / 1200 | 400k |
|
207 |
+
| [csmsc_multi_band_melgan.v2](https://drive.google.com/open?id=1F7FwxGbvSo1Rnb5kp0dhGwimRJstzCrz) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/csmsc/voc1/conf/multi_band_melgan.v2.yaml) | ZH | 24k | 80-7600 | 2048 / 300 / 1200 | 1M |
|
208 |
+
| [csmsc_hifigan.v1](https://drive.google.com/open?id=1gTkVloMqteBfSRhTrZGdOBBBRsGd3qt8) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/csmsc/voc1/conf/hifigan.v1.yaml) | ZH | 24k | 80-7600 | 2048 / 300 / 1200 | 2.5M |
|
209 |
+
| [csmsc_style_melgan.v1](https://drive.google.com/open?id=1gl4P5W_ST_nnv0vjurs7naVm5UJqkZIn) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/csmsc/voc1/conf/style_melgan.v1.yaml) | ZH | 24k | 80-7600 | 2048 / 300 / 1200 | 1.5M |
|
210 |
+
| [arctic_slt_parallel_wavegan.v1](https://drive.google.com/open?id=1xG9CmSED2TzFdklD6fVxzf7kFV2kPQAJ) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/arctic/voc1/conf/parallel_wavegan.v1.yaml) | EN | 16k | 80-7600 | 1024 / 256 / None | 400k |
|
211 |
+
| [jnas_parallel_wavegan.v1](https://drive.google.com/open?id=1n_hkxPxryVXbp6oHM1NFm08q0TcoDXz1) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/jnas/voc1/conf/parallel_wavegan.v1.yaml) | JP | 16k | 80-7600 | 1024 / 256 / None | 400k |
|
212 |
+
| [vctk_parallel_wavegan.v1](https://drive.google.com/open?id=1dGTu-B7an2P5sEOepLPjpOaasgaSnLpi) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/vctk/voc1/conf/parallel_wavegan.v1.yaml) | EN | 24k | 80-7600 | 2048 / 300 / 1200 | 400k |
|
213 |
+
| [vctk_parallel_wavegan.v1.long](https://drive.google.com/open?id=1qoocM-VQZpjbv5B-zVJpdraazGcPL0So) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/vctk/voc1/conf/parallel_wavegan.v1.long.yaml) | EN | 24k | 80-7600 | 2048 / 300 / 1200 | 1M |
|
214 |
+
| [vctk_multi_band_melgan.v2](https://drive.google.com/open?id=17EkB4hSKUEDTYEne-dNHtJT724hdivn4) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/vctk/voc1/conf/multi_band_melgan.v2.yaml) | EN | 24k | 80-7600 | 2048 / 300 / 1200 | 1M |
|
215 |
+
| [vctk_hifigan.v1](https://drive.google.com/open?id=17fu7ukS97m-8StXPc6ltW8a3hr0fsQBP) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/vctk/voc1/conf/hifigan.v1.yaml) | EN | 24k | 80-7600 | 2048 / 300 / 1200 | 2.5M |
|
216 |
+
| [vctk_style_melgan.v1](https://drive.google.com/open?id=1kfJgzDgrOFYxTfVTNbTHcnyq--cc6plo) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/vctk/voc1/conf/style_melgan.v1.yaml) | EN | 24k | 80-7600 | 2048 / 300 / 1200 | 1.5M |
|
217 |
+
| [libritts_parallel_wavegan.v1](https://drive.google.com/open?id=1pb18Nd2FCYWnXfStszBAEEIMe_EZUJV0) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/libritts/voc1/conf/parallel_wavegan.v1.yaml) | EN | 24k | 80-7600 | 2048 / 300 / 1200 | 400k |
|
218 |
+
| [libritts_parallel_wavegan.v1.long](https://drive.google.com/open?id=15ibzv-uTeprVpwT946Hl1XUYDmg5Afwz) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/libritts/voc1/conf/parallel_wavegan.v1.long.yaml) | EN | 24k | 80-7600 | 2048 / 300 / 1200 | 1M |
|
219 |
+
| [libritts_multi_band_melgan.v2](https://drive.google.com/open?id=1jfB15igea6tOQ0hZJGIvnpf3QyNhTLnq) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/libritts/voc1/conf/multi_band_melgan.v2.yaml) | EN | 24k | 80-7600 | 2048 / 300 / 1200 | 1M |
|
220 |
+
| [libritts_hifigan.v1](https://drive.google.com/open?id=10jBLsjQT3LvR-3GgPZpRvWIWvpGjzDnM) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/libritts/voc1/conf/hifigan.v1.yaml) | EN | 24k | 80-7600 | 2048 / 300 / 1200 | 2.5M |
|
221 |
+
| [libritts_style_melgan.v1](https://drive.google.com/open?id=1OPpYbrqYOJ_hHNGSQHzUxz_QZWWBwV9r) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/libritts/voc1/conf/style_melgan.v1.yaml) | EN | 24k | 80-7600 | 2048 / 300 / 1200 | 1.5M |
|
222 |
+
| [kss_parallel_wavegan.v1](https://drive.google.com/open?id=1n5kitXZqPHUr-veoUKCyfJvb3p1g0VlY) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/libritts/voc1/conf/parallel_wavegan.v1.yaml) | KO | 24k | 80-7600 | 2048 / 300 / 1200 | 400k |
|
223 |
+
| [hui_acg_hokuspokus_parallel_wavegan.v1](https://drive.google.com/open?id=1rwzpIwb65xbW5fFPsqPWdforsk4U-vDg) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/libritts/voc1/conf/parallel_wavegan.v1.yaml) | DE | 24k | 80-7600 | 2048 / 300 / 1200 | 400k |
|
224 |
+
| [ruslan_parallel_wavegan.v1](https://drive.google.com/open?id=1QGuesaRKGful0bUTTaFZdbjqHNhy2LpE) | [link](https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/libritts/voc1/conf/parallel_wavegan.v1.yaml) | RU | 24k | 80-7600 | 2048 / 300 / 1200 | 400k |
|
225 |
+
|
226 |
+
Please access at [our google drive](https://drive.google.com/open?id=1sd_QzcUNnbiaWq7L0ykMP7Xmk-zOuxTi) to check more results.
|
227 |
+
|
228 |
+
## How-to-use pretrained models
|
229 |
+
|
230 |
+
### Analysis-synthesis
|
231 |
+
|
232 |
+
Here the minimal code is shown to perform analysis-synthesis using the pretrained model.
|
233 |
+
|
234 |
+
```bash
|
235 |
+
# Please make sure you installed `parallel_wavegan`
|
236 |
+
# If not, please install via pip
|
237 |
+
$ pip install parallel_wavegan
|
238 |
+
|
239 |
+
# You can download the pretrained model from terminal
|
240 |
+
$ python << EOF
|
241 |
+
from parallel_wavegan.utils import download_pretrained_model
|
242 |
+
download_pretrained_model("<pretrained_model_tag>", "pretrained_model")
|
243 |
+
EOF
|
244 |
+
|
245 |
+
# You can get all of available pretrained models as follows:
|
246 |
+
$ python << EOF
|
247 |
+
from parallel_wavegan.utils import PRETRAINED_MODEL_LIST
|
248 |
+
print(PRETRAINED_MODEL_LIST.keys())
|
249 |
+
EOF
|
250 |
+
|
251 |
+
# Now you can find downloaded pretrained model in `pretrained_model/<pretrain_model_tag>/`
|
252 |
+
$ ls pretrain_model/<pretrain_model_tag>
|
253 |
+
ο checkpoint-400000steps.pkl ο config.yml ο stats.h5
|
254 |
+
|
255 |
+
# These files can also be downloaded manually from the above results
|
256 |
+
|
257 |
+
# Please put an audio file in `sample` directory to perform analysis-synthesis
|
258 |
+
$ ls sample/
|
259 |
+
ο sample.wav
|
260 |
+
|
261 |
+
# Then perform feature extraction -> feature normalization -> synthesis
|
262 |
+
$ parallel-wavegan-preprocess \
|
263 |
+
--config pretrain_model/<pretrain_model_tag>/config.yml \
|
264 |
+
--rootdir sample \
|
265 |
+
--dumpdir dump/sample/raw
|
266 |
+
100%|ββββββββββββββββββββββββββββββββββββββββ| 1/1 [00:00<00:00, 914.19it/s]
|
267 |
+
$ parallel-wavegan-normalize \
|
268 |
+
--config pretrain_model/<pretrain_model_tag>/config.yml \
|
269 |
+
--rootdir dump/sample/raw \
|
270 |
+
--dumpdir dump/sample/norm \
|
271 |
+
--stats pretrain_model/<pretrain_model_tag>/stats.h5
|
272 |
+
2019-11-13 13:44:29,574 (normalize:87) INFO: the number of files = 1.
|
273 |
+
100%|ββββββββββββββββββββββββββββββββββββββββ| 1/1 [00:00<00:00, 513.13it/s]
|
274 |
+
$ parallel-wavegan-decode \
|
275 |
+
--checkpoint pretrain_model/<pretrain_model_tag>/checkpoint-400000steps.pkl \
|
276 |
+
--dumpdir dump/sample/norm \
|
277 |
+
--outdir sample
|
278 |
+
2019-11-13 13:44:31,229 (decode:91) INFO: the number of features to be decoded = 1.
|
279 |
+
[decode]: 100%|βββββββββββββββββββ| 1/1 [00:00<00:00, 18.33it/s, RTF=0.0146]
|
280 |
+
2019-11-13 13:44:37,132 (decode:129) INFO: finished generation of 1 utterances (RTF = 0.015).
|
281 |
+
|
282 |
+
# You can skip normalization step (on-the-fly normalization, feature extraction -> synthesis)
|
283 |
+
$ parallel-wavegan-preprocess \
|
284 |
+
--config pretrain_model/<pretrain_model_tag>/config.yml \
|
285 |
+
--rootdir sample \
|
286 |
+
--dumpdir dump/sample/raw
|
287 |
+
100%|ββββββββββββββββββββββββββββββββββββββββ| 1/1 [00:00<00:00, 914.19it/s]
|
288 |
+
$ parallel-wavegan-decode \
|
289 |
+
--checkpoint pretrain_model/<pretrain_model_tag>/checkpoint-400000steps.pkl \
|
290 |
+
--dumpdir dump/sample/raw \
|
291 |
+
--normalize-before \
|
292 |
+
--outdir sample
|
293 |
+
2019-11-13 13:44:31,229 (decode:91) INFO: the number of features to be decoded = 1.
|
294 |
+
[decode]: 100%|βββββββββββββββββββ| 1/1 [00:00<00:00, 18.33it/s, RTF=0.0146]
|
295 |
+
2019-11-13 13:44:37,132 (decode:129) INFO: finished generation of 1 utterances (RTF = 0.015).
|
296 |
+
|
297 |
+
# you can find the generated speech in `sample` directory
|
298 |
+
$ ls sample
|
299 |
+
ο sample.wav ο sample_gen.wav
|
300 |
+
```
|
301 |
+
|
302 |
+
### Decoding with ESPnet-TTS model's features
|
303 |
+
|
304 |
+
Here, I show the procedure to generate waveforms with features generated by [ESPnet-TTS](https://github.com/espnet/espnet) models.
|
305 |
+
|
306 |
+
```bash
|
307 |
+
# Make sure you already finished running the recipe of ESPnet-TTS.
|
308 |
+
# You must use the same feature settings for both Text2Mel and Mel2Wav models.
|
309 |
+
# Let us move on "ESPnet" recipe directory
|
310 |
+
$ cd /path/to/espnet/egs/<recipe_name>/tts1
|
311 |
+
$ pwd
|
312 |
+
/path/to/espnet/egs/<recipe_name>/tts1
|
313 |
+
|
314 |
+
# If you use ESPnet2, move on `egs2/`
|
315 |
+
$ cd /path/to/espnet/egs2/<recipe_name>/tts1
|
316 |
+
$ pwd
|
317 |
+
/path/to/espnet/egs2/<recipe_name>/tts1
|
318 |
+
|
319 |
+
# Please install this repository in ESPnet conda (or virtualenv) environment
|
320 |
+
$ . ./path.sh && pip install -U parallel_wavegan
|
321 |
+
|
322 |
+
# You can download the pretrained model from terminal
|
323 |
+
$ python << EOF
|
324 |
+
from parallel_wavegan.utils import download_pretrained_model
|
325 |
+
download_pretrained_model("<pretrained_model_tag>", "pretrained_model")
|
326 |
+
EOF
|
327 |
+
|
328 |
+
# You can get all of available pretrained models as follows:
|
329 |
+
$ python << EOF
|
330 |
+
from parallel_wavegan.utils import PRETRAINED_MODEL_LIST
|
331 |
+
print(PRETRAINED_MODEL_LIST.keys())
|
332 |
+
EOF
|
333 |
+
|
334 |
+
# You can find downloaded pretrained model in `pretrained_model/<pretrain_model_tag>/`
|
335 |
+
$ ls pretrain_model/<pretrain_model_tag>
|
336 |
+
ο checkpoint-400000steps.pkl ο config.yml ο stats.h5
|
337 |
+
|
338 |
+
# These files can also be downloaded manually from the above results
|
339 |
+
```
|
340 |
+
|
341 |
+
**Case 1**: If you use the same dataset for both Text2Mel and Mel2Wav
|
342 |
+
|
343 |
+
```bash
|
344 |
+
# In this case, you can directly use generated features for decoding.
|
345 |
+
# Please specify `feats.scp` path for `--feats-scp`, which is located in
|
346 |
+
# exp/<your_model_dir>/outputs_*_decode/<set_name>/feats.scp.
|
347 |
+
# Note that do not use outputs_*decode_denorm/<set_name>/feats.scp since
|
348 |
+
# it is de-normalized features (the input for PWG is normalized features).
|
349 |
+
$ parallel-wavegan-decode \
|
350 |
+
--checkpoint pretrain_model/<pretrain_model_tag>/checkpoint-400000steps.pkl \
|
351 |
+
--feats-scp exp/<your_model_dir>/outputs_*_decode/<set_name>/feats.scp \
|
352 |
+
--outdir <path_to_outdir>
|
353 |
+
|
354 |
+
# In the case of ESPnet2, the generated feature can be found in
|
355 |
+
# exp/<your_model_dir>/decode_*/<set_name>/norm/feats.scp.
|
356 |
+
$ parallel-wavegan-decode \
|
357 |
+
--checkpoint pretrain_model/<pretrain_model_tag>/checkpoint-400000steps.pkl \
|
358 |
+
--feats-scp exp/<your_model_dir>/decode_*/<set_name>/norm/feats.scp \
|
359 |
+
--outdir <path_to_outdir>
|
360 |
+
|
361 |
+
# You can find the generated waveforms in <path_to_outdir>/.
|
362 |
+
$ ls <path_to_outdir>
|
363 |
+
ο utt_id_1_gen.wav ο utt_id_2_gen.wav ... ο utt_id_N_gen.wav
|
364 |
+
```
|
365 |
+
|
366 |
+
**Case 2**: If you use different datasets for Text2Mel and Mel2Wav models
|
367 |
+
|
368 |
+
```bash
|
369 |
+
# In this case, you must provide `--normalize-before` option additionally.
|
370 |
+
# And use `feats.scp` of de-normalized generated features.
|
371 |
+
|
372 |
+
# ESPnet1 case
|
373 |
+
$ parallel-wavegan-decode \
|
374 |
+
--checkpoint pretrain_model/<pretrain_model_tag>/checkpoint-400000steps.pkl \
|
375 |
+
--feats-scp exp/<your_model_dir>/outputs_*_decode_denorm/<set_name>/feats.scp \
|
376 |
+
--outdir <path_to_outdir> \
|
377 |
+
--normalize-before
|
378 |
+
|
379 |
+
# ESPnet2 case
|
380 |
+
$ parallel-wavegan-decode \
|
381 |
+
--checkpoint pretrain_model/<pretrain_model_tag>/checkpoint-400000steps.pkl \
|
382 |
+
--feats-scp exp/<your_model_dir>/decode_*/<set_name>/denorm/feats.scp \
|
383 |
+
--outdir <path_to_outdir> \
|
384 |
+
--normalize-before
|
385 |
+
|
386 |
+
# You can find the generated waveforms in <path_to_outdir>/.
|
387 |
+
$ ls <path_to_outdir>
|
388 |
+
ο utt_id_1_gen.wav ο utt_id_2_gen.wav ... ο utt_id_N_gen.wav
|
389 |
+
```
|
390 |
+
|
391 |
+
If you want to combine these models in python, you can try the real-time demonstration in Google Colab!
|
392 |
+
- Real-time demonstration with ESPnet2 [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/espnet/notebook/blob/master/espnet2_tts_realtime_demo.ipynb)
|
393 |
+
- Real-time demonstration with ESPnet1 [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/espnet/notebook/blob/master/tts_realtime_demo.ipynb)
|
394 |
+
|
395 |
+
### Decoding with dumped npy files
|
396 |
+
|
397 |
+
Sometimes we want to decode with dumped npy files, which are mel-spectrogram generated by TTS models.
|
398 |
+
Please make sure you used the same feature extraction settings of the pretrained vocoder (`fs`, `fft_size`, `hop_size`, `win_length`, `fmin`, and `fmax`).
|
399 |
+
Only the difference of `log_base` can be changed with some post-processings (we use log 10 instead of natural log as a default).
|
400 |
+
See detail in [the comment](https://github.com/kan-bayashi/ParallelWaveGAN/issues/169#issuecomment-649320778).
|
401 |
+
|
402 |
+
```bash
|
403 |
+
# Generate dummy npy file of mel-spectrogram
|
404 |
+
$ ipython
|
405 |
+
[ins] In [1]: import numpy as np
|
406 |
+
[ins] In [2]: x = np.random.randn(512, 80) # (#frames, #mels)
|
407 |
+
[ins] In [3]: np.save("dummy_1.npy", x)
|
408 |
+
[ins] In [4]: y = np.random.randn(256, 80) # (#frames, #mels)
|
409 |
+
[ins] In [5]: np.save("dummy_2.npy", y)
|
410 |
+
[ins] In [6]: exit
|
411 |
+
|
412 |
+
# Make scp file (key-path format)
|
413 |
+
$ find -name "*.npy" | awk '{print "dummy_" NR " " $1}' > feats.scp
|
414 |
+
|
415 |
+
# Check (<utt_id> <path>)
|
416 |
+
$ cat feats.scp
|
417 |
+
dummy_1 ./dummy_1.npy
|
418 |
+
dummy_2 ./dummy_2.npy
|
419 |
+
|
420 |
+
# Decode without feature normalization
|
421 |
+
# This case assumes that the input mel-spectrogram is normalized with the same statistics of the pretrained model.
|
422 |
+
$ parallel-wavegan-decode \
|
423 |
+
--checkpoint /path/to/checkpoint-400000steps.pkl \
|
424 |
+
--feats-scp ./feats.scp \
|
425 |
+
--outdir wav
|
426 |
+
2021-08-10 09:13:07,624 (decode:140) INFO: The number of features to be decoded = 2.
|
427 |
+
[decode]: 100%|ββββββββββββββββββββββββββββββββββββββββ| 2/2 [00:00<00:00, 13.84it/s, RTF=0.00264]
|
428 |
+
2021-08-10 09:13:29,660 (decode:174) INFO: Finished generation of 2 utterances (RTF = 0.005).
|
429 |
+
|
430 |
+
# Decode with feature normalization
|
431 |
+
# This case assumes that the input mel-spectrogram is not normalized.
|
432 |
+
$ parallel-wavegan-decode \
|
433 |
+
--checkpoint /path/to/checkpoint-400000steps.pkl \
|
434 |
+
--feats-scp ./feats.scp \
|
435 |
+
--normalize-before \
|
436 |
+
--outdir wav
|
437 |
+
2021-08-10 09:13:07,624 (decode:140) INFO: The number of features to be decoded = 2.
|
438 |
+
[decode]: 100%|ββββββββββββββββββββββββββββββββββββββββ| 2/2 [00:00<00:00, 13.84it/s, RTF=0.00264]
|
439 |
+
2021-08-10 09:13:29,660 (decode:174) INFO: Finished generation of 2 utterances (RTF = 0.005).
|
440 |
+
```
|
441 |
+
|
442 |
+
## References
|
443 |
+
|
444 |
+
- [Parallel WaveGAN](https://arxiv.org/abs/1910.11480)
|
445 |
+
- [r9y9/wavenet_vocoder](https://github.com/r9y9/wavenet_vocoder)
|
446 |
+
- [LiyuanLucasLiu/RAdam](https://github.com/LiyuanLucasLiu/RAdam)
|
447 |
+
- [MelGAN](https://arxiv.org/abs/1910.06711)
|
448 |
+
- [descriptinc/melgan-neurips](https://github.com/descriptinc/melgan-neurips)
|
449 |
+
- [Multi-band MelGAN](https://arxiv.org/abs/2005.05106)
|
450 |
+
- [HiFi-GAN](https://arxiv.org/abs/2010.05646)
|
451 |
+
- [jik876/hifi-gan](https://github.com/jik876/hifi-gan)
|
452 |
+
- [StyleMelGAN](https://arxiv.org/abs/2011.01557)
|
453 |
+
|
454 |
+
## Acknowledgement
|
455 |
+
|
456 |
+
The author would like to thank Ryuichi Yamamoto ([@r9y9](https://github.com/r9y9)) for his great repository, paper, and valuable discussions.
|
457 |
+
|
458 |
+
## Author
|
459 |
+
|
460 |
+
Tomoki Hayashi ([@kan-bayashi](https://github.com/kan-bayashi))
|
461 |
+
E-mail: `hayashi.tomoki<at>g.sp.m.is.nagoya-u.ac.jp`
|