Spaces:
Runtime error
Runtime error
File size: 18,143 Bytes
2b7bf83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
class ConvNorm(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
padding=None, dilation=1, bias=True, w_init_gain='linear'):
super(ConvNorm, self).__init__()
if padding is None:
assert(kernel_size % 2 == 1)
padding = int(dilation * (kernel_size - 1) / 2)
self.conv = torch.nn.Conv1d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation,
bias=bias)
torch.nn.init.xavier_uniform_(
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain))
def forward(self, signal):
conv_signal = self.conv(signal)
return conv_signal
class Encoder_lf0(nn.Module):
def __init__(self, typ='no_emb'):
super(Encoder_lf0, self).__init__()
self.type = typ
if typ != 'no_emb':
convolutions = []
for i in range(3):
conv_layer = nn.Sequential(
ConvNorm(1 if i==0 else 256, 256,
kernel_size=5, stride=2 if i==2 else 1,
padding=2,
dilation=1, w_init_gain='relu'),
nn.GroupNorm(256//16, 256),
nn.ReLU())
convolutions.append(conv_layer)
self.convolutions = nn.ModuleList(convolutions)
self.lstm = nn.LSTM(256, 32, 1, batch_first=True, bidirectional=True)
def forward(self, lf0):
if self.type != 'no_emb':
if len(lf0.shape) == 2:
lf0 = lf0.unsqueeze(1) # bz x 1 x 128
for conv in self.convolutions:
lf0 = conv(lf0) # bz x 256 x 128
lf0 = lf0.transpose(1,2) # bz x 64 x 256
self.lstm.flatten_parameters()
lf0, _ = self.lstm(lf0) # bz x 64 x 64
else:
if len(lf0.shape) == 2:
lf0 = lf0.unsqueeze(-1) # bz x 128 x 1 # no downsampling
return lf0
def pad_layer(inp, layer, pad_type='reflect'):
kernel_size = layer.kernel_size[0]
if kernel_size % 2 == 0:
pad = (kernel_size//2, kernel_size//2 - 1)
else:
pad = (kernel_size//2, kernel_size//2)
# padding
inp = F.pad(inp,
pad=pad,
mode=pad_type)
out = layer(inp)
return out
def conv_bank(x, module_list, act, pad_type='reflect'):
outs = []
for layer in module_list:
out = act(pad_layer(x, layer, pad_type))
outs.append(out)
out = torch.cat(outs + [x], dim=1)
return out
def get_act(act):
if act == 'relu':
return nn.ReLU()
elif act == 'lrelu':
return nn.LeakyReLU()
else:
return nn.ReLU()
class SpeakerEncoder(nn.Module):
'''
reference from speaker-encoder of AdaIN-VC: https://github.com/jjery2243542/adaptive_voice_conversion/blob/master/model.py
'''
def __init__(self, c_in=80, c_h=128, c_out=256, kernel_size=5,
bank_size=8, bank_scale=1, c_bank=128,
n_conv_blocks=6, n_dense_blocks=6,
subsample=[1, 2, 1, 2, 1, 2], act='relu', dropout_rate=0):
super(SpeakerEncoder, self).__init__()
self.c_in = c_in
self.c_h = c_h
self.c_out = c_out
self.kernel_size = kernel_size
self.n_conv_blocks = n_conv_blocks
self.n_dense_blocks = n_dense_blocks
self.subsample = subsample
self.act = get_act(act)
self.conv_bank = nn.ModuleList(
[nn.Conv1d(c_in, c_bank, kernel_size=k) for k in range(bank_scale, bank_size + 1, bank_scale)])
in_channels = c_bank * (bank_size // bank_scale) + c_in
self.in_conv_layer = nn.Conv1d(in_channels, c_h, kernel_size=1)
self.first_conv_layers = nn.ModuleList([nn.Conv1d(c_h, c_h, kernel_size=kernel_size) for _ \
in range(n_conv_blocks)])
self.second_conv_layers = nn.ModuleList([nn.Conv1d(c_h, c_h, kernel_size=kernel_size, stride=sub)
for sub, _ in zip(subsample, range(n_conv_blocks))])
self.pooling_layer = nn.AdaptiveAvgPool1d(1)
self.first_dense_layers = nn.ModuleList([nn.Linear(c_h, c_h) for _ in range(n_dense_blocks)])
self.second_dense_layers = nn.ModuleList([nn.Linear(c_h, c_h) for _ in range(n_dense_blocks)])
self.output_layer = nn.Linear(c_h, c_out)
self.dropout_layer = nn.Dropout(p=dropout_rate)
def conv_blocks(self, inp):
out = inp
# convolution blocks
for l in range(self.n_conv_blocks):
y = pad_layer(out, self.first_conv_layers[l])
y = self.act(y)
y = self.dropout_layer(y)
y = pad_layer(y, self.second_conv_layers[l])
y = self.act(y)
y = self.dropout_layer(y)
if self.subsample[l] > 1:
out = F.avg_pool1d(out, kernel_size=self.subsample[l], ceil_mode=True)
out = y + out
return out
def dense_blocks(self, inp):
out = inp
# dense layers
for l in range(self.n_dense_blocks):
y = self.first_dense_layers[l](out)
y = self.act(y)
y = self.dropout_layer(y)
y = self.second_dense_layers[l](y)
y = self.act(y)
y = self.dropout_layer(y)
out = y + out
return out
def forward(self, x):
out = conv_bank(x, self.conv_bank, act=self.act)
# dimension reduction layer
out = pad_layer(out, self.in_conv_layer)
out = self.act(out)
# conv blocks
out = self.conv_blocks(out)
# avg pooling
out = self.pooling_layer(out).squeeze(2)
# dense blocks
out = self.dense_blocks(out)
out = self.output_layer(out)
return out
class Encoder(nn.Module):
'''
reference from: https://github.com/bshall/VectorQuantizedCPC/blob/master/model.py
'''
def __init__(self, in_channels, channels, n_embeddings, z_dim, c_dim):
super(Encoder, self).__init__()
self.conv = nn.Conv1d(in_channels, channels, 4, 2, 1, bias=False)
self.encoder = nn.Sequential(
nn.LayerNorm(channels),
nn.ReLU(True),
nn.Linear(channels, channels, bias=False),
nn.LayerNorm(channels),
nn.ReLU(True),
nn.Linear(channels, channels, bias=False),
nn.LayerNorm(channels),
nn.ReLU(True),
nn.Linear(channels, channels, bias=False),
nn.LayerNorm(channels),
nn.ReLU(True),
nn.Linear(channels, channels, bias=False),
nn.LayerNorm(channels),
nn.ReLU(True),
nn.Linear(channels, z_dim),
)
self.codebook = VQEmbeddingEMA(n_embeddings, z_dim)
self.rnn = nn.LSTM(z_dim, c_dim, batch_first=True)
def encode(self, mel):
z = self.conv(mel)
z_beforeVQ = self.encoder(z.transpose(1, 2))
z, r, indices = self.codebook.encode(z_beforeVQ)
c, _ = self.rnn(z)
return z, c, z_beforeVQ, indices
def forward(self, mels):
z = self.conv(mels.float()) # (bz, 80, 128) -> (bz, 512, 128/2)
z_beforeVQ = self.encoder(z.transpose(1, 2)) # (bz, 512, 128/2) -> (bz, 128/2, 512) -> (bz, 128/2, 64)
z, r, loss, perplexity = self.codebook(z_beforeVQ) # z: (bz, 128/2, 64)
c, _ = self.rnn(z) # (64, 140/2, 64) -> (64, 140/2, 256)
return z, c, z_beforeVQ, loss, perplexity
class VQEmbeddingEMA(nn.Module):
'''
reference from: https://github.com/bshall/VectorQuantizedCPC/blob/master/model.py
'''
def __init__(self, n_embeddings, embedding_dim, commitment_cost=0.25, decay=0.999, epsilon=1e-5):
super(VQEmbeddingEMA, self).__init__()
self.commitment_cost = commitment_cost
self.decay = decay
self.epsilon = epsilon
init_bound = 1 / 512
embedding = torch.Tensor(n_embeddings, embedding_dim)
embedding.uniform_(-init_bound, init_bound)
self.register_buffer("embedding", embedding) # only change during forward
self.register_buffer("ema_count", torch.zeros(n_embeddings))
self.register_buffer("ema_weight", self.embedding.clone())
def encode(self, x):
M, D = self.embedding.size()
x_flat = x.detach().reshape(-1, D)
distances = torch.addmm(torch.sum(self.embedding ** 2, dim=1) +
torch.sum(x_flat ** 2, dim=1, keepdim=True),
x_flat, self.embedding.t(),
alpha=-2.0, beta=1.0)
indices = torch.argmin(distances.float(), dim=-1)
quantized = F.embedding(indices, self.embedding)
quantized = quantized.view_as(x)
residual = x - quantized
return quantized, residual, indices.view(x.size(0), x.size(1))
def forward(self, x):
M, D = self.embedding.size()
x_flat = x.detach().reshape(-1, D)
distances = torch.addmm(torch.sum(self.embedding ** 2, dim=1) +
torch.sum(x_flat ** 2, dim=1, keepdim=True),
x_flat, self.embedding.t(),
alpha=-2.0, beta=1.0) # calculate the distance between each ele in embedding and x
indices = torch.argmin(distances.float(), dim=-1)
encodings = F.one_hot(indices, M).float()
quantized = F.embedding(indices, self.embedding)
quantized = quantized.view_as(x)
if self.training: # EMA based codebook learning
self.ema_count = self.decay * self.ema_count + (1 - self.decay) * torch.sum(encodings, dim=0)
n = torch.sum(self.ema_count)
self.ema_count = (self.ema_count + self.epsilon) / (n + M * self.epsilon) * n
dw = torch.matmul(encodings.t(), x_flat)
self.ema_weight = self.decay * self.ema_weight + (1 - self.decay) * dw
self.embedding = self.ema_weight / self.ema_count.unsqueeze(-1)
e_latent_loss = F.mse_loss(x, quantized.detach())
loss = self.commitment_cost * e_latent_loss
residual = x - quantized
quantized = x + (quantized - x).detach()
avg_probs = torch.mean(encodings, dim=0)
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))
return quantized, residual, loss, perplexity
class CPCLoss(nn.Module):
'''
CPC-loss calculation: negative samples are drawn within-speaker
reference from: https://github.com/bshall/VectorQuantizedCPC/blob/master/model.py
'''
def __init__(self, n_speakers_per_batch, n_utterances_per_speaker, n_prediction_steps, n_negatives, z_dim, c_dim):
super(CPCLoss, self).__init__()
self.n_speakers_per_batch = n_speakers_per_batch
self.n_utterances_per_speaker = n_utterances_per_speaker
self.n_prediction_steps = n_prediction_steps // 2
self.n_negatives = n_negatives
self.z_dim = z_dim
self.c_dim = c_dim
self.predictors = nn.ModuleList([
nn.Linear(c_dim, z_dim) for _ in range(n_prediction_steps)
])
def forward(self, z, c): # z:(64, 70, 64), c:(64, 70, 256)
length = z.size(1) - self.n_prediction_steps # 64
z = z.reshape(
self.n_speakers_per_batch,
self.n_utterances_per_speaker,
-1,
self.z_dim
) # (64, 70, 64) -> (8, 8, 70, 64)
c = c[:, :-self.n_prediction_steps, :] # (64, 64, 256)
losses, accuracies = list(), list()
for k in range(1, self.n_prediction_steps+1):
z_shift = z[:, :, k:length + k, :] # (8, 8, 64, 64), positive samples
Wc = self.predictors[k-1](c) # (64, 64, 256) -> (64, 64, 64)
Wc = Wc.view(
self.n_speakers_per_batch,
self.n_utterances_per_speaker,
-1,
self.z_dim
) # (64, 64, 64) -> (8, 8, 64, 64)
batch_index = torch.randint(
0, self.n_utterances_per_speaker,
size=(
self.n_utterances_per_speaker,
self.n_negatives
),
device=z.device
)
batch_index = batch_index.view(
1, self.n_utterances_per_speaker, self.n_negatives, 1
) # (1, 8, 17, 1)
# seq_index: (8, 8, 17, 64)
seq_index = torch.randint(
1, length,
size=(
self.n_speakers_per_batch,
self.n_utterances_per_speaker,
self.n_negatives,
length
),
device=z.device
)
seq_index += torch.arange(length, device=z.device) #(1)
seq_index = torch.remainder(seq_index, length) #(2) (1)+(2) ensures that the current positive frame will not be selected as negative sample...
speaker_index = torch.arange(self.n_speakers_per_batch, device=z.device) # within-speaker sampling
speaker_index = speaker_index.view(-1, 1, 1, 1)
# z_negatives: (8,8,17,64,64); z_negatives[0,0,:,0,:] is (17, 64) that is negative samples for first frame of first utterance of first speaker...
z_negatives = z_shift[speaker_index, batch_index, seq_index, :] # speaker_index has the original order (within-speaker sampling)
# batch_index is randomly sampled from 0~7, each point has 17 negative samples
# seq_index is randomly sampled from 0~115
# so for each positive frame with time-id as t, the negative samples will be selected from
# another or the current utterance and the seq-index (frame-index) will not conclude t
zs = torch.cat((z_shift.unsqueeze(2), z_negatives), dim=2) # (8, 8, 1+17, 64, 64)
f = torch.sum(zs * Wc.unsqueeze(2) / math.sqrt(self.z_dim), dim=-1) # (8, 8, 1+17, 64), vector product in fact...
f = f.view(
self.n_speakers_per_batch * self.n_utterances_per_speaker,
self.n_negatives + 1,
-1
) # (64, 1+17, 64)
labels = torch.zeros(
self.n_speakers_per_batch * self.n_utterances_per_speaker, length,
dtype=torch.long, device=z.device
) # (64, 64)
loss = F.cross_entropy(f, labels)
accuracy = f.argmax(dim=1) == labels # (64, 116)
accuracy = torch.mean(accuracy.float())
losses.append(loss)
accuracies.append(accuracy.item())
loss = torch.stack(losses).mean()
return loss, accuracies
class CPCLoss_sameSeq(nn.Module):
'''
CPC-loss calculation: negative samples are drawn within-sequence/utterance
'''
def __init__(self, n_speakers_per_batch, n_utterances_per_speaker, n_prediction_steps, n_negatives, z_dim, c_dim):
super(CPCLoss_sameSeq, self).__init__()
self.n_speakers_per_batch = n_speakers_per_batch
self.n_utterances_per_speaker = n_utterances_per_speaker
self.n_prediction_steps = n_prediction_steps
self.n_negatives = n_negatives
self.z_dim = z_dim
self.c_dim = c_dim
self.predictors = nn.ModuleList([
nn.Linear(c_dim, z_dim) for _ in range(n_prediction_steps)
])
def forward(self, z, c): # z:(256, 64, 64), c:(256, 64, 256)
length = z.size(1) - self.n_prediction_steps # 64-6=58, length is the total time-steps of each utterance used for calculated cpc loss
n_speakers_per_batch = z.shape[0] # each utterance is treated as a speaker
c = c[:, :-self.n_prediction_steps, :] # (256, 58, 256)
losses, accuracies = list(), list()
for k in range(1, self.n_prediction_steps+1):
z_shift = z[:, k:length + k, :] # (256, 58, 64), positive samples
Wc = self.predictors[k-1](c) # (256, 58, 256) -> (256, 58, 64)
# seq_index: (256, 10, 58)
seq_index = torch.randint(
1, length,
size=(
n_speakers_per_batch,
self.n_negatives,
length
),
device=z.device
)
seq_index += torch.arange(length, device=z.device) #(1)
seq_index = torch.remainder(seq_index, length) #(2) (1)+(2) ensures that the current positive frame will not be selected as negative sample...
speaker_index = torch.arange(n_speakers_per_batch, device=z.device) # within-utterance sampling
speaker_index = speaker_index.view(-1, 1, 1)
z_negatives = z_shift[speaker_index, seq_index, :] # (256,10,58,64), z_negatives[i,:,j,:] is the negative samples set for ith utterance and jth time-step
zs = torch.cat((z_shift.unsqueeze(1), z_negatives), dim=1) # (256,11,58,64)
f = torch.sum(zs * Wc.unsqueeze(1) / math.sqrt(self.z_dim), dim=-1) # (256,11,58), vector product in fact...
labels = torch.zeros(
n_speakers_per_batch, length,
dtype=torch.long, device=z.device
)
loss = F.cross_entropy(f, labels)
accuracy = f.argmax(dim=1) == labels # (256, 58)
accuracy = torch.mean(accuracy.float())
losses.append(loss)
accuracies.append(accuracy.item())
loss = torch.stack(losses).mean()
return loss, accuracies
|