File size: 5,699 Bytes
2b7bf83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import torch
import torch.nn as nn
import torch.nn.functional as F
# import numpy as np
'''
reference from: https://github.com/auspicious3000/autovc/blob/master/model_vc.py
'''

class LinearNorm(torch.nn.Module):
    def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
        super(LinearNorm, self).__init__()
        self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)

        torch.nn.init.xavier_uniform_(
            self.linear_layer.weight,
            gain=torch.nn.init.calculate_gain(w_init_gain))

    def forward(self, x):
        return self.linear_layer(x)


class ConvNorm(torch.nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
                 padding=None, dilation=1, bias=True, w_init_gain='linear'):
        super(ConvNorm, self).__init__()
        if padding is None:
            assert(kernel_size % 2 == 1)
            padding = int(dilation * (kernel_size - 1) / 2)

        self.conv = torch.nn.Conv1d(in_channels, out_channels,
                                    kernel_size=kernel_size, stride=stride,
                                    padding=padding, dilation=dilation,
                                    bias=bias)

        torch.nn.init.xavier_uniform_(
            self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain))

    def forward(self, signal):
        conv_signal = self.conv(signal)
        return conv_signal

    
    
class Postnet(nn.Module):
    """Postnet
        - Five 1-d convolution with 512 channels and kernel size 5
    """

    def __init__(self):
        super(Postnet, self).__init__()
        self.convolutions = nn.ModuleList()

        self.convolutions.append(
            nn.Sequential(
                ConvNorm(80, 512,
                         kernel_size=5, stride=1,
                         padding=2,
                         dilation=1, w_init_gain='tanh'),
                nn.BatchNorm1d(512))
        )

        for i in range(1, 5 - 1):
            self.convolutions.append(
                nn.Sequential(
                    ConvNorm(512,
                             512,
                             kernel_size=5, stride=1,
                             padding=2,
                             dilation=1, w_init_gain='tanh'),
                    nn.BatchNorm1d(512))
            )

        self.convolutions.append(
            nn.Sequential(
                ConvNorm(512, 80,
                         kernel_size=5, stride=1,
                         padding=2,
                         dilation=1, w_init_gain='linear'),
                nn.BatchNorm1d(80))
            )

    def forward(self, x):
        for i in range(len(self.convolutions) - 1):
            x = torch.tanh(self.convolutions[i](x))

        x = self.convolutions[-1](x)

        return x    
    
    

class Decoder(nn.Module):
    """Decoder module:
    """
    def __init__(self, dim_neck=64, dim_lf0=1, dim_emb=256, dim_pre=512):
        super(Decoder, self).__init__()
        
        self.lstm1 = nn.LSTM(dim_neck+dim_emb+dim_lf0, dim_pre, 1, batch_first=True)
        
        convolutions = []
        for i in range(3):
            conv_layer = nn.Sequential(
                ConvNorm(dim_pre,
                         dim_pre,
                         kernel_size=5, stride=1,
                         padding=2,
                         dilation=1, w_init_gain='relu'),
                nn.BatchNorm1d(dim_pre))
            convolutions.append(conv_layer)
        self.convolutions = nn.ModuleList(convolutions)
        
        self.lstm2 = nn.LSTM(dim_pre, 1024, 2, batch_first=True)
        
        self.linear_projection = LinearNorm(1024, 80)

    def forward(self, x):
        
        #self.lstm1.flatten_parameters()
        x, _ = self.lstm1(x)
        x = x.transpose(1, 2)
        
        for conv in self.convolutions:
            x = F.relu(conv(x))
        x = x.transpose(1, 2)
        
        outputs, _ = self.lstm2(x)
        
        decoder_output = self.linear_projection(outputs)

        return decoder_output   
    
    
    
        
class Decoder_ac(nn.Module):
    """Decoder_ac network."""
    def __init__(self, dim_neck=64, dim_lf0=1, dim_emb=256, dim_pre=512, use_l1_loss=False):
        super(Decoder_ac, self).__init__()
        self.use_l1_loss = use_l1_loss
        # self.encoder = Encoder(dim_neck, dim_emb, freq)
        self.decoder = Decoder(dim_neck, dim_lf0, dim_emb, dim_pre)
        self.postnet = Postnet()

    def forward(self, z, lf0_embs, spk_embs, mel_target=None):
        z = F.interpolate(z.transpose(1, 2), scale_factor=2) # (bs, 140/2, 64) -> (bs, 64, 140/2) -> (bs, 64, 140)
        z = z.transpose(1, 2) # (bs, 64, 140) -> (bs, 140, 64)
        spk_embs_exp = spk_embs.unsqueeze(1).expand(-1,z.shape[1],-1)
        lf0_embs = lf0_embs[:,:z.shape[1],:]
        # print(z.shape, lf0_embs.shape)
        x = torch.cat([z, lf0_embs, spk_embs_exp], dim=-1)
        
        mel_outputs = self.decoder(x)
                
        mel_outputs_postnet = self.postnet(mel_outputs.transpose(2,1))
        mel_outputs_postnet = mel_outputs + mel_outputs_postnet.transpose(2,1)
        # print('mel_outputs.shape:', mel_outputs_postnet.shape)
        if mel_target is None:
            return mel_outputs_postnet
        else:
            # mel_target = mel_target[:,1:-1,:]
            loss = F.mse_loss(mel_outputs, mel_target) + \
                F.mse_loss(mel_outputs_postnet, mel_target)
            if self.use_l1_loss:
                loss = loss + F.l1_loss(mel_outputs, mel_target) + \
                    F.l1_loss(mel_outputs_postnet, mel_target)
            return loss, mel_outputs_postnet