File size: 4,293 Bytes
2b7bf83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

# Copyright 2019 Tomoki Hayashi
#  MIT License (https://opensource.org/licenses/MIT)

import logging

import numpy as np
import pytest
import torch

from parallel_wavegan.layers import CausalConv1d
from parallel_wavegan.layers import CausalConvTranspose1d
from parallel_wavegan.layers import Conv1d
from parallel_wavegan.layers import Conv1d1x1
from parallel_wavegan.layers import Conv2d
from parallel_wavegan.layers import ConvInUpsampleNetwork
from parallel_wavegan.layers import PQMF
from parallel_wavegan.layers import UpsampleNetwork

logging.basicConfig(
    level=logging.WARN,
    format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)


def test_conv_initialization():
    conv = Conv1d(10, 10, 3, bias=True)
    np.testing.assert_array_equal(
        conv.bias.data.numpy(), np.zeros_like(conv.bias.data.numpy())
    )
    conv1x1 = Conv1d1x1(10, 10, bias=True)
    np.testing.assert_array_equal(
        conv1x1.bias.data.numpy(), np.zeros_like(conv1x1.bias.data.numpy())
    )
    kernel_size = (10, 10)
    conv2d = Conv2d(10, 10, kernel_size, bias=True)
    np.testing.assert_array_equal(
        conv2d.weight.data.numpy(),
        np.ones_like(conv2d.weight.data.numpy()) / np.prod(kernel_size),
    )
    np.testing.assert_array_equal(
        conv2d.bias.data.numpy(), np.zeros_like(conv2d.bias.data.numpy())
    )
    kernel_size = (1, 10)
    conv2d = Conv2d(10, 10, kernel_size, bias=True)
    np.testing.assert_array_equal(
        conv2d.weight.data.numpy(),
        np.ones_like(conv2d.weight.data.numpy()) / np.prod(kernel_size),
    )
    np.testing.assert_array_equal(
        conv2d.bias.data.numpy(), np.zeros_like(conv2d.bias.data.numpy())
    )


@pytest.mark.parametrize(
    "use_causal_conv",
    [
        (False),
        (True),
    ],
)
def test_upsample(use_causal_conv):
    length = 10
    scales = [4, 4]
    x = torch.randn(1, 10, length)
    upsample = UpsampleNetwork(scales)
    y = upsample(x)
    assert x.size(-1) * np.prod(scales) == y.size(-1)

    for aux_context_window in [0, 1, 2, 3]:
        conv_upsample = ConvInUpsampleNetwork(
            scales,
            aux_channels=x.size(1),
            aux_context_window=aux_context_window,
            use_causal_conv=use_causal_conv,
        )
        y = conv_upsample(x)
        assert (x.size(-1) - 2 * aux_context_window) * np.prod(scales) == y.size(-1)


@torch.no_grad()
@pytest.mark.parametrize(
    "kernel_size, dilation, pad, pad_params",
    [
        (3, 1, "ConstantPad1d", {"value": 0.0}),
        (3, 3, "ConstantPad1d", {"value": 0.0}),
        (2, 1, "ConstantPad1d", {"value": 0.0}),
        (2, 3, "ConstantPad1d", {"value": 0.0}),
        (5, 1, "ConstantPad1d", {"value": 0.0}),
        (5, 3, "ConstantPad1d", {"value": 0.0}),
        (3, 3, "ReflectionPad1d", {}),
        (2, 1, "ReflectionPad1d", {}),
        (2, 3, "ReflectionPad1d", {}),
        (5, 1, "ReflectionPad1d", {}),
        (5, 3, "ReflectionPad1d", {}),
    ],
)
def test_causal_conv(kernel_size, dilation, pad, pad_params):
    x = torch.randn(1, 1, 32)
    conv = CausalConv1d(1, 1, kernel_size, dilation, pad=pad, pad_params=pad_params)
    y1 = conv(x)
    x[:, :, 16:] += torch.randn(1, 1, 16)
    y2 = conv(x)
    assert x.size(2) == y1.size(2)
    np.testing.assert_array_equal(
        y1[:, :, :16].cpu().numpy(),
        y2[:, :, :16].cpu().numpy(),
    )


@torch.no_grad()
@pytest.mark.parametrize(
    "kernel_size, stride",
    [
        (4, 2),
        (6, 3),
        (10, 5),
    ],
)
def test_causal_conv_transpose(kernel_size, stride):
    deconv = CausalConvTranspose1d(1, 1, kernel_size, stride)
    x = torch.randn(1, 1, 32)
    y1 = deconv(x)
    x[:, :, 19:] += torch.randn(1, 1, 32 - 19)
    y2 = deconv(x)
    assert x.size(2) * stride == y1.size(2)
    np.testing.assert_array_equal(
        y1[:, :, : 19 * stride].cpu().numpy(),
        y2[:, :, : 19 * stride].cpu().numpy(),
    )


@pytest.mark.parametrize(
    "subbands",
    [
        (3),
        (4),
    ],
)
def test_pqmf(subbands):
    pqmf = PQMF(subbands)
    x = torch.randn(1, 1, subbands * 32)
    y = pqmf.analysis(x)
    assert y.shape[2] * subbands == x.shape[2]
    x_hat = pqmf.synthesis(y)
    assert x.shape[2] == x_hat.shape[2]