Spaces:
Runtime error
Runtime error
File size: 5,371 Bytes
2b7bf83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
# -*- coding: utf-8 -*-
from spectrogram import logmelspectrogram
import numpy as np
from joblib import Parallel, delayed
import librosa
import soundfile as sf
import os
from glob import glob
from tqdm import tqdm
import random
import json
import resampy
import pyworld as pw
def extract_logmel(wav_path, sr=16000):
# wav, fs = librosa.load(wav_path, sr=sr)
wav, fs = sf.read(wav_path)
wav, _ = librosa.effects.trim(wav, top_db=60)
if fs != sr:
wav = resampy.resample(wav, fs, sr, axis=0)
fs = sr
# duration = len(wav)/fs
assert fs == 16000
peak = np.abs(wav).max()
if peak > 1.0:
wav /= peak
mel = logmelspectrogram(
x=wav,
fs=fs,
n_mels=80,
n_fft=400,
n_shift=160,
win_length=400,
window='hann',
fmin=80,
fmax=7600,
)
tlen = mel.shape[0]
frame_period = 160/fs*1000
f0, timeaxis = pw.dio(wav.astype('float64'), fs, frame_period=frame_period)
f0 = pw.stonemask(wav.astype('float64'), f0, timeaxis, fs)
f0 = f0[:tlen].reshape(-1).astype('float32')
nonzeros_indices = np.nonzero(f0)
lf0 = f0.copy()
lf0[nonzeros_indices] = np.log(f0[nonzeros_indices]) # for f0(Hz), lf0 > 0 when f0 != 0
wav_name = os.path.basename(wav_path).split('.')[0]
# print(wav_name, mel.shape, duration)
return wav_name, mel, lf0, mel.shape[0]
def normalize_logmel(wav_name, mel, mean, std):
mel = (mel - mean) / (std + 1e-8)
return wav_name, mel
def save_one_file(save_path, arr):
os.makedirs(os.path.dirname(save_path), exist_ok=True)
np.save(save_path, arr)
def save_logmel(save_root, wav_name, melinfo, mode):
mel, lf0, mel_len = melinfo
spk = wav_name.split('_')[0]
mel_save_path = f'{save_root}/{mode}/mels/{spk}/{wav_name}.npy'
lf0_save_path = f'{save_root}/{mode}/lf0/{spk}/{wav_name}.npy'
save_one_file(mel_save_path, mel)
save_one_file(lf0_save_path, lf0)
return mel_len, mel_save_path, lf0_save_path
# def get_wavs_names(spks, data_root)
data_root = '/Dataset/VCTK-Corpus/wav48_silence_trimmed'
save_root = 'data'
os.makedirs(save_root, exist_ok=True)
spk_info_txt = '/Dataset/VCTK-Corpus/speaker-info.txt'
f = open(spk_info_txt, 'r')
gen2spk = {}
all_spks = []
for i, line in enumerate(f):
if i == 0:
continue
else:
tmp = line.split()
# print(tmp)
spk = tmp[0]
all_spks.append(spk)
gen = tmp[2]
if gen not in gen2spk:
gen2spk[gen] = [spk]
else:
gen2spk[gen].append(spk)
random.shuffle(all_spks)
train_spks = all_spks[:-20]
test_spks = all_spks[-20:]
train_wavs_names = []
valid_wavs_names = []
test_wavs_names = []
print('all_spks:', all_spks)
for spk in train_spks:
spk_wavs = glob(f'{data_root}/{spk}/*mic1.flac')
print('len(spk_wavs):', len(spk_wavs))
spk_wavs_names = [os.path.basename(p).split('.')[0] for p in spk_wavs]
valid_names = random.sample(spk_wavs_names, int(len(spk_wavs_names)*0.1))
train_names = [n for n in spk_wavs_names if n not in valid_names]
train_wavs_names += train_names
valid_wavs_names += valid_names
for spk in test_spks:
spk_wavs = glob(f'{data_root}/{spk}/*mic1.flac')
print('len(spk_wavs):', len(spk_wavs))
spk_wavs_names = [os.path.basename(p).split('.')[0] for p in spk_wavs]
test_wavs_names += spk_wavs_names
print(len(train_wavs_names))
print(len(valid_wavs_names))
print(len(test_wavs_names))
# extract log-mel
print('extract log-mel...')
all_wavs = glob(f'{data_root}/*/*mic1.flac')
results = Parallel(n_jobs=-1)(delayed(extract_logmel)(wav_path) for wav_path in tqdm(all_wavs))
wn2mel = {}
for r in results:
wav_name, mel, lf0, mel_len = r
# print(wav_name, mel.shape, duration)
wn2mel[wav_name] = [mel, lf0, mel_len]
# normalize log-mel
print('normalize log-mel...')
mels = []
spk2lf0 = {}
for wav_name in train_wavs_names:
mel, _, _ = wn2mel[wav_name]
mels.append(mel)
mels = np.concatenate(mels, 0)
mean = np.mean(mels, 0)
std = np.std(mels, 0)
mel_stats = np.concatenate([mean.reshape(1,-1), std.reshape(1,-1)], 0)
np.save(f'{save_root}/mel_stats.npy', mel_stats)
results = Parallel(n_jobs=-1)(delayed(normalize_logmel)(wav_name, wn2mel[wav_name][0], mean, std) for wav_name in tqdm(wn2mel.keys()))
wn2mel_new = {}
for r in results:
wav_name, mel = r
lf0 = wn2mel[wav_name][1]
mel_len = wn2mel[wav_name][2]
wn2mel_new[wav_name] = [mel, lf0, mel_len]
# save log-mel
print('save log-mel...')
train_results = Parallel(n_jobs=-1)(delayed(save_logmel)(save_root, wav_name, wn2mel_new[wav_name], 'train') for wav_name in tqdm(train_wavs_names))
valid_results = Parallel(n_jobs=-1)(delayed(save_logmel)(save_root, wav_name, wn2mel_new[wav_name], 'valid') for wav_name in tqdm(valid_wavs_names))
test_results = Parallel(n_jobs=-1)(delayed(save_logmel)(save_root, wav_name, wn2mel_new[wav_name], 'test') for wav_name in tqdm(test_wavs_names))
def save_json(save_root, results, mode):
fp = open(f'{save_root}/{mode}.json', 'w')
json.dump(results, fp, indent=4)
fp.close()
save_json(save_root, train_results, 'train')
save_json(save_root, valid_results, 'valid')
save_json(save_root, test_results, 'test')
|