File size: 4,872 Bytes
2b7bf83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#!/usr/bin/env python3

# Copyright 2021 Tomoki Hayashi
#  MIT License (https://opensource.org/licenses/MIT)

"""Test code for HiFi-GAN modules."""

import logging

import numpy as np
import pytest
import torch

from parallel_wavegan.losses import DiscriminatorAdversarialLoss
from parallel_wavegan.losses import FeatureMatchLoss
from parallel_wavegan.losses import GeneratorAdversarialLoss
from parallel_wavegan.losses import MultiResolutionSTFTLoss
from parallel_wavegan.models import HiFiGANGenerator
from parallel_wavegan.models import HiFiGANMultiScaleMultiPeriodDiscriminator
from test_parallel_wavegan import make_mutli_reso_stft_loss_args


logging.basicConfig(
    level=logging.DEBUG,
    format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)


def make_hifigan_generator_args(**kwargs):
    defaults = dict(
        in_channels=80,
        out_channels=1,
        channels=512,
        kernel_size=7,
        upsample_scales=(8, 8, 2, 2),
        upsample_kernel_sizes=(16, 16, 4, 4),
        resblock_kernel_sizes=(3, 7, 11),
        resblock_dilations=[(1, 3, 5), (1, 3, 5), (1, 3, 5)],
        use_additional_convs=True,
        bias=True,
        nonlinear_activation="LeakyReLU",
        nonlinear_activation_params={"negative_slope": 0.1},
        use_weight_norm=True,
    )
    defaults.update(kwargs)
    return defaults


def make_hifigan_multi_scale_multi_period_discriminator_args(**kwargs):
    defaults = dict(
        scales=3,
        scale_downsample_pooling="AvgPool1d",
        scale_downsample_pooling_params={
            "kernel_size": 4,
            "stride": 2,
            "padding": 2,
        },
        scale_discriminator_params={
            "in_channels": 1,
            "out_channels": 1,
            "kernel_sizes": [15, 41, 5, 3],
            "channels": 128,
            "max_downsample_channels": 128,
            "max_groups": 16,
            "bias": True,
            "downsample_scales": [2, 2, 4, 4, 1],
            "nonlinear_activation": "LeakyReLU",
            "nonlinear_activation_params": {"negative_slope": 0.1},
        },
        follow_official_norm=False,
        periods=[2, 3, 5, 7, 11],
        period_discriminator_params={
            "in_channels": 1,
            "out_channels": 1,
            "kernel_sizes": [5, 3],
            "channels": 32,
            "downsample_scales": [3, 3, 3, 3, 1],
            "max_downsample_channels": 128,
            "bias": True,
            "nonlinear_activation": "LeakyReLU",
            "nonlinear_activation_params": {"negative_slope": 0.1},
            "use_weight_norm": True,
            "use_spectral_norm": False,
        },
    )
    defaults.update(kwargs)
    return defaults


@pytest.mark.parametrize(
    "dict_g, dict_d, dict_loss",
    [
        ({}, {}, {}),
        ({}, {"scales": 1}, {}),
        ({}, {"periods": [2]}, {}),
        ({}, {"scales": 1, "periods": [2]}, {}),
        ({}, {"follow_official_norm": True}, {}),
        ({"use_additional_convs": False}, {}, {}),
    ],
)
def test_hifigan_trainable(dict_g, dict_d, dict_loss):
    # setup
    batch_size = 4
    batch_length = 2 ** 13
    args_g = make_hifigan_generator_args(**dict_g)
    args_d = make_hifigan_multi_scale_multi_period_discriminator_args(**dict_d)
    args_loss = make_mutli_reso_stft_loss_args(**dict_loss)
    y = torch.randn(batch_size, 1, batch_length)
    c = torch.randn(
        batch_size,
        args_g["in_channels"],
        batch_length // np.prod(args_g["upsample_scales"]),
    )
    model_g = HiFiGANGenerator(**args_g)
    model_d = HiFiGANMultiScaleMultiPeriodDiscriminator(**args_d)
    aux_criterion = MultiResolutionSTFTLoss(**args_loss)
    feat_match_criterion = FeatureMatchLoss(
        average_by_layers=False,
        average_by_discriminators=False,
        include_final_outputs=True,
    )
    gen_adv_criterion = GeneratorAdversarialLoss(
        average_by_discriminators=False,
    )
    dis_adv_criterion = DiscriminatorAdversarialLoss(
        average_by_discriminators=False,
    )
    optimizer_g = torch.optim.AdamW(model_g.parameters())
    optimizer_d = torch.optim.AdamW(model_d.parameters())

    # check generator trainable
    y_hat = model_g(c)
    p_hat = model_d(y_hat)
    sc_loss, mag_loss = aux_criterion(y_hat, y)
    aux_loss = sc_loss + mag_loss
    adv_loss = gen_adv_criterion(p_hat)
    with torch.no_grad():
        p = model_d(y)
    fm_loss = feat_match_criterion(p_hat, p)
    loss_g = adv_loss + aux_loss + fm_loss
    optimizer_g.zero_grad()
    loss_g.backward()
    optimizer_g.step()

    # check discriminator trainable
    p = model_d(y)
    p_hat = model_d(y_hat.detach())
    real_loss, fake_loss = dis_adv_criterion(p_hat, p)
    loss_d = real_loss + fake_loss
    optimizer_d.zero_grad()
    loss_d.backward()
    optimizer_d.step()

    print(model_d)
    print(model_g)