File size: 7,901 Bytes
bf91721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import numpy as np
import random
import torch
from basicsr.data.degradations import random_add_gaussian_noise_pt, random_add_poisson_noise_pt
from basicsr.data.transforms import paired_random_crop
from basicsr.models.sr_model import SRModel
from basicsr.utils import DiffJPEG, USMSharp
from basicsr.utils.img_process_util import filter2D
from basicsr.utils.registry import MODEL_REGISTRY
from torch.nn import functional as F


@MODEL_REGISTRY.register()
class RealESRNetModel(SRModel):
    """RealESRNet Model"""

    def __init__(self, opt):
        super(RealESRNetModel, self).__init__(opt)
        self.jpeger = DiffJPEG(differentiable=False).cuda()
        self.usm_sharpener = USMSharp().cuda()
        self.queue_size = opt['queue_size']

    @torch.no_grad()
    def _dequeue_and_enqueue(self):
        # training pair pool
        # initialize
        b, c, h, w = self.lq.size()
        if not hasattr(self, 'queue_lr'):
            assert self.queue_size % b == 0, 'queue size should be divisible by batch size'
            self.queue_lr = torch.zeros(self.queue_size, c, h, w).cuda()
            _, c, h, w = self.gt.size()
            self.queue_gt = torch.zeros(self.queue_size, c, h, w).cuda()
            self.queue_ptr = 0
        if self.queue_ptr == self.queue_size:  # full
            # do dequeue and enqueue
            # shuffle
            idx = torch.randperm(self.queue_size)
            self.queue_lr = self.queue_lr[idx]
            self.queue_gt = self.queue_gt[idx]
            # get
            lq_dequeue = self.queue_lr[0:b, :, :, :].clone()
            gt_dequeue = self.queue_gt[0:b, :, :, :].clone()
            # update
            self.queue_lr[0:b, :, :, :] = self.lq.clone()
            self.queue_gt[0:b, :, :, :] = self.gt.clone()

            self.lq = lq_dequeue
            self.gt = gt_dequeue
        else:
            # only do enqueue
            self.queue_lr[self.queue_ptr:self.queue_ptr + b, :, :, :] = self.lq.clone()
            self.queue_gt[self.queue_ptr:self.queue_ptr + b, :, :, :] = self.gt.clone()
            self.queue_ptr = self.queue_ptr + b

    @torch.no_grad()
    def feed_data(self, data):
        if self.is_train:
            # training data synthesis
            self.gt = data['gt'].to(self.device)
            # USM the GT images
            if self.opt['gt_usm'] is True:
                self.gt = self.usm_sharpener(self.gt)

            self.kernel1 = data['kernel1'].to(self.device)
            self.kernel2 = data['kernel2'].to(self.device)
            self.sinc_kernel = data['sinc_kernel'].to(self.device)

            ori_h, ori_w = self.gt.size()[2:4]

            # ----------------------- The first degradation process ----------------------- #
            # blur
            out = filter2D(self.gt, self.kernel1)
            # random resize
            updown_type = random.choices(['up', 'down', 'keep'], self.opt['resize_prob'])[0]
            if updown_type == 'up':
                scale = np.random.uniform(1, self.opt['resize_range'][1])
            elif updown_type == 'down':
                scale = np.random.uniform(self.opt['resize_range'][0], 1)
            else:
                scale = 1
            mode = random.choice(['area', 'bilinear', 'bicubic'])
            out = F.interpolate(out, scale_factor=scale, mode=mode)
            # noise
            gray_noise_prob = self.opt['gray_noise_prob']
            if np.random.uniform() < self.opt['gaussian_noise_prob']:
                out = random_add_gaussian_noise_pt(
                    out, sigma_range=self.opt['noise_range'], clip=True, rounds=False, gray_prob=gray_noise_prob)
            else:
                out = random_add_poisson_noise_pt(
                    out,
                    scale_range=self.opt['poisson_scale_range'],
                    gray_prob=gray_noise_prob,
                    clip=True,
                    rounds=False)
            # JPEG compression
            jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.opt['jpeg_range'])
            out = torch.clamp(out, 0, 1)
            out = self.jpeger(out, quality=jpeg_p)

            # ----------------------- The second degradation process ----------------------- #
            # blur
            if np.random.uniform() < self.opt['second_blur_prob']:
                out = filter2D(out, self.kernel2)
            # random resize
            updown_type = random.choices(['up', 'down', 'keep'], self.opt['resize_prob2'])[0]
            if updown_type == 'up':
                scale = np.random.uniform(1, self.opt['resize_range2'][1])
            elif updown_type == 'down':
                scale = np.random.uniform(self.opt['resize_range2'][0], 1)
            else:
                scale = 1
            mode = random.choice(['area', 'bilinear', 'bicubic'])
            out = F.interpolate(
                out, size=(int(ori_h / self.opt['scale'] * scale), int(ori_w / self.opt['scale'] * scale)), mode=mode)
            # noise
            gray_noise_prob = self.opt['gray_noise_prob2']
            if np.random.uniform() < self.opt['gaussian_noise_prob2']:
                out = random_add_gaussian_noise_pt(
                    out, sigma_range=self.opt['noise_range2'], clip=True, rounds=False, gray_prob=gray_noise_prob)
            else:
                out = random_add_poisson_noise_pt(
                    out,
                    scale_range=self.opt['poisson_scale_range2'],
                    gray_prob=gray_noise_prob,
                    clip=True,
                    rounds=False)

            # JPEG compression + the final sinc filter
            # We also need to resize images to desired sizes. We group [resize back + sinc filter] together
            # as one operation.
            # We consider two orders:
            #   1. [resize back + sinc filter] + JPEG compression
            #   2. JPEG compression + [resize back + sinc filter]
            # Empirically, we find other combinations (sinc + JPEG + Resize) will introduce twisted lines.
            if np.random.uniform() < 0.5:
                # resize back + the final sinc filter
                mode = random.choice(['area', 'bilinear', 'bicubic'])
                out = F.interpolate(out, size=(ori_h // self.opt['scale'], ori_w // self.opt['scale']), mode=mode)
                out = filter2D(out, self.sinc_kernel)
                # JPEG compression
                jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.opt['jpeg_range2'])
                out = torch.clamp(out, 0, 1)
                out = self.jpeger(out, quality=jpeg_p)
            else:
                # JPEG compression
                jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.opt['jpeg_range2'])
                out = torch.clamp(out, 0, 1)
                out = self.jpeger(out, quality=jpeg_p)
                # resize back + the final sinc filter
                mode = random.choice(['area', 'bilinear', 'bicubic'])
                out = F.interpolate(out, size=(ori_h // self.opt['scale'], ori_w // self.opt['scale']), mode=mode)
                out = filter2D(out, self.sinc_kernel)

            # clamp and round
            self.lq = torch.clamp((out * 255.0).round(), 0, 255) / 255.

            # random crop
            gt_size = self.opt['gt_size']
            self.gt, self.lq = paired_random_crop(self.gt, self.lq, gt_size, self.opt['scale'])

            # training pair pool
            self._dequeue_and_enqueue()
        else:
            self.lq = data['lq'].to(self.device)
            if 'gt' in data:
                self.gt = data['gt'].to(self.device)

    def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
        # do not use the synthetic process during validation
        self.is_train = False
        super(RealESRNetModel, self).nondist_validation(dataloader, current_iter, tb_logger, save_img)
        self.is_train = True