Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,613 Bytes
29a36a9 86cad56 d458282 86cad56 d458282 86cad56 d458282 86cad56 d458282 2f0e386 d458282 86cad56 2f0e386 86cad56 2f0e386 86cad56 d458282 86cad56 2f0e386 86cad56 2f0e386 86cad56 d458282 b7e06cd d458282 86cad56 d458282 86cad56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import spaces
import gradio as gr
import torch
import math
from PIL import Image
from diffusers import QwenImageEditPlusPipeline, FlowMatchEulerDiscreteScheduler
# Load pipeline with optimized scheduler at startup
scheduler_config = {
"base_image_seq_len": 256,
"base_shift": math.log(3),
"invert_sigmas": False,
"max_image_seq_len": 8192,
"max_shift": math.log(3),
"num_train_timesteps": 1000,
"shift": 1.0,
"shift_terminal": None,
"stochastic_sampling": False,
"time_shift_type": "exponential",
"use_beta_sigmas": False,
"use_dynamic_shifting": True,
"use_exponential_sigmas": False,
"use_karras_sigmas": False,
}
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
pipeline = QwenImageEditPlusPipeline.from_pretrained(
"Qwen/Qwen-Image-Edit-2509",
scheduler=scheduler,
torch_dtype=torch.bfloat16
)
pipeline.to('cuda')
pipeline.set_progress_bar_config(disable=None)
# Load LoRA for faster inference
pipeline.load_lora_weights(
"lightx2v/Qwen-Image-Lightning",
weight_name="Qwen-Image-Lightning-8steps-V2.0-bf16.safetensors"
)
pipeline.fuse_lora()
@spaces.GPU(duration=60)
def edit_images(image1, image2, prompt, seed, true_cfg_scale, negative_prompt, num_steps, guidance_scale):
if image1 is None or image2 is None:
gr.Warning("Please upload both images")
return None
# Convert to PIL if needed
if not isinstance(image1, Image.Image):
image1 = Image.fromarray(image1)
if not isinstance(image2, Image.Image):
image2 = Image.fromarray(image2)
inputs = {
"image": [image1, image2],
"prompt": prompt,
"generator": torch.manual_seed(seed),
"true_cfg_scale": true_cfg_scale,
"negative_prompt": negative_prompt,
"num_inference_steps": num_steps,
"guidance_scale": guidance_scale,
"num_images_per_prompt": 1,
}
with torch.inference_mode():
output = pipeline(**inputs)
return output.images[0]
# Example prompts and images
example_prompts = [
"The magician bear is on the left, the alchemist bear is on the right, facing each other in the central park square.",
"Two characters standing side by side in a beautiful garden with flowers blooming",
"The hero on the left and the villain on the right, facing off in an epic battle scene",
"Two friends sitting together on a park bench, enjoying the sunset",
]
# Example image paths
example_images = [
["bear1.jpg", "bear2.jpg", "The magician bear is on the left, the alchemist bear is on the right, facing each other in the central park square."],
]
with gr.Blocks(css="footer {visibility: hidden}") as demo:
gr.Markdown(
"""
# Qwen Image Edit Plus (Optimized)
Upload two images and describe how you want them combined or edited together.
[Built with anycoder](https://huggingface.co/spaces/akhaliq/anycoder)
"""
)
with gr.Row():
with gr.Column():
image1_input = gr.Image(
label="First Image",
type="pil",
height=300
)
image2_input = gr.Image(
label="Second Image",
type="pil",
height=300
)
with gr.Column():
output_image = gr.Image(
label="Edited Result",
type="pil",
height=620
)
with gr.Group():
prompt_input = gr.Textbox(
label="Prompt",
placeholder="Describe how you want the images combined or edited...",
value=example_prompts[0],
lines=3
)
gr.Examples(
examples=example_images,
inputs=[image1_input, image2_input, prompt_input],
label="Example Images and Prompts"
)
gr.Examples(
examples=[[p] for p in example_prompts],
inputs=[prompt_input],
label="Example Prompts Only"
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
seed_input = gr.Number(
label="Seed",
value=0,
precision=0
)
num_steps = gr.Slider(
label="Number of Inference Steps",
minimum=8,
maximum=30,
value=8,
step=1
)
with gr.Row():
true_cfg_scale = gr.Slider(
label="True CFG Scale",
minimum=1.0,
maximum=10.0,
value=1.0,
step=0.5
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1.0,
maximum=5.0,
value=1.0,
step=0.1
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value=" ",
placeholder="What to avoid in the generation..."
)
generate_btn = gr.Button("Generate Edited Image", variant="primary", size="lg")
generate_btn.click(
fn=edit_images,
inputs=[
image1_input,
image2_input,
prompt_input,
seed_input,
true_cfg_scale,
negative_prompt,
num_steps,
guidance_scale
],
outputs=output_image,
show_progress="full"
)
demo.launch() |