File size: 5,297 Bytes
5019931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import datetime
import logging
import os
import pickle
from typing import Dict, NoReturn

import librosa
import numpy as np
import yaml


def create_logging(log_dir: str, filemode: str) -> logging:
    r"""Create logging to write out log files.

    Args:
        logs_dir, str, directory to write out logs
        filemode: str, e.g., "w"

    Returns:
        logging
    """
    os.makedirs(log_dir, exist_ok=True)
    i1 = 0

    while os.path.isfile(os.path.join(log_dir, "{:04d}.log".format(i1))):
        i1 += 1

    log_path = os.path.join(log_dir, "{:04d}.log".format(i1))
    logging.basicConfig(
        level=logging.DEBUG,
        format="%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s",
        datefmt="%a, %d %b %Y %H:%M:%S",
        filename=log_path,
        filemode=filemode,
    )

    # Print to console
    console = logging.StreamHandler()
    console.setLevel(logging.INFO)
    formatter = logging.Formatter("%(name)-12s: %(levelname)-8s %(message)s")
    console.setFormatter(formatter)
    logging.getLogger("").addHandler(console)

    return logging


def load_audio(
    audio_path: str,
    mono: bool,
    sample_rate: float,
    offset: float = 0.0,
    duration: float = None,
) -> np.array:
    r"""Load audio.

    Args:
        audio_path: str
        mono: bool
        sample_rate: float
    """
    audio, _ = librosa.core.load(
        audio_path, sr=sample_rate, mono=mono, offset=offset, duration=duration
    )
    # (audio_samples,) | (channels_num, audio_samples)

    if audio.ndim == 1:
        audio = audio[None, :]
        # (1, audio_samples,)

    return audio


def load_random_segment(
    audio_path: str, random_state, segment_seconds: float, mono: bool, sample_rate: int
) -> np.array:
    r"""Randomly select an audio segment from a recording."""

    duration = librosa.get_duration(filename=audio_path)

    start_time = random_state.uniform(0.0, duration - segment_seconds)

    audio = load_audio(
        audio_path=audio_path,
        mono=mono,
        sample_rate=sample_rate,
        offset=start_time,
        duration=segment_seconds,
    )
    # (channels_num, audio_samples)

    return audio


def float32_to_int16(x: np.float32) -> np.int16:

    x = np.clip(x, a_min=-1, a_max=1)

    return (x * 32767.0).astype(np.int16)


def int16_to_float32(x: np.int16) -> np.float32:

    return (x / 32767.0).astype(np.float32)


def read_yaml(config_yaml: str):

    with open(config_yaml, "r") as fr:
        configs = yaml.load(fr, Loader=yaml.FullLoader)

    return configs


def check_configs_gramma(configs: Dict) -> NoReturn:
    r"""Check if the gramma of the config dictionary for training is legal."""
    input_source_types = configs['train']['input_source_types']

    for augmentation_type in configs['train']['augmentations'].keys():
        augmentation_dict = configs['train']['augmentations'][augmentation_type]

        for source_type in augmentation_dict.keys():
            if source_type not in input_source_types:
                error_msg = (
                    "The source type '{}'' in configs['train']['augmentations']['{}'] "
                    "must be one of input_source_types {}".format(
                        source_type, augmentation_type, input_source_types
                    )
                )
                raise Exception(error_msg)


def magnitude_to_db(x: float) -> float:
    eps = 1e-10
    return 20.0 * np.log10(max(x, eps))


def db_to_magnitude(x: float) -> float:
    return 10.0 ** (x / 20)


def get_pitch_shift_factor(shift_pitch: float) -> float:
    r"""The factor of the audio length to be scaled."""
    return 2 ** (shift_pitch / 12)


class StatisticsContainer(object):
    def __init__(self, statistics_path):
        self.statistics_path = statistics_path

        self.backup_statistics_path = "{}_{}.pkl".format(
            os.path.splitext(self.statistics_path)[0],
            datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S"),
        )

        self.statistics_dict = {"train": [], "test": []}

    def append(self, steps, statistics, split):
        statistics["steps"] = steps
        self.statistics_dict[split].append(statistics)

    def dump(self):
        pickle.dump(self.statistics_dict, open(self.statistics_path, "wb"))
        pickle.dump(self.statistics_dict, open(self.backup_statistics_path, "wb"))
        logging.info("    Dump statistics to {}".format(self.statistics_path))
        logging.info("    Dump statistics to {}".format(self.backup_statistics_path))

    '''
    def load_state_dict(self, resume_steps):
        self.statistics_dict = pickle.load(open(self.statistics_path, "rb"))

        resume_statistics_dict = {"train": [], "test": []}

        for key in self.statistics_dict.keys():
            for statistics in self.statistics_dict[key]:
                if statistics["steps"] <= resume_steps:
                    resume_statistics_dict[key].append(statistics)

        self.statistics_dict = resume_statistics_dict
    '''


def calculate_sdr(ref: np.array, est: np.array) -> float:
    s_true = ref
    s_artif = est - ref
    sdr = 10.0 * (
        np.log10(np.clip(np.mean(s_true ** 2), 1e-8, np.inf))
        - np.log10(np.clip(np.mean(s_artif ** 2), 1e-8, np.inf))
    )
    return sdr